The product of (√3x + √5)(√15x+2√30) assuming x ≥ 0 is 3√5x² + 6√10x + 5√3x + 10√6
<h3>What is the product of the expression?</h3>
It follows from the task content that the expression given whose product is to be evaluated is;
(√3x + √5)(√15x+2√30)
Hence, by multiplying the terms with each other accordingly; we have;
= (√45x² + 2√90x + √75x + 2√150)
= 3√5x² + 2√90x + √75x + 2√150
= 3√5x² + 2×3√10x + √75x + 2√150
= 3√5x² + 2×3√10x + 5√3x + 2√150
= 3√5x² + 2×3√10x + 5√3x + 10√6
= 3√5x² + 6√10x + 5√3x + 10√6
Ultimately, the product of the expression is; 3√5x² + 6√10x + 5√3x + 10√6
Learn more about product:
brainly.com/question/10090998
#SPJ1
To find FDH and FDE you first need to solve GDH.
Here’s how to set up GDH.
8x-1=6x+15
Subtract 6x from both sides so that it cancels out.
2x-1=15
Add 1 to both sides so that it cancels out.
2x=16
Divide by 2z
x=8
Plug in.
GDH: 8(8)-1+6(8)+15=78
FDH: 122+78= 200
FDE: 122+15=137
Answer:
0.0035289
Step-by-step explanation:
From the question;
mean annual salary = $63,500
n = sample size = 31
Standard deviation = $6,200
Firstly, we calculate the z-score of $60,500
Mathematically;
z-score = x-mean/SD/√n = (60500-63500)/6200/√(31) = -2.6941
So we want to find the probability that P(z < -2.6941)
We can get this from the standard normal table
P( z < -2.6941) = 0.0035289