1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali5045456 [20]
3 years ago
9

A closed container has 5.04 ⋅ 1023 atoms of a gas. Each atom of the gas weighs 1.67 ⋅ 10−24 grams.

Mathematics
1 answer:
MatroZZZ [7]3 years ago
4 0

Answer:

The correct option is the last one (0,84 grams, because (5.04 × 1.67) × (10^23 x 10^-24) = 8.4168 x 10^-1))

Step-by-step explanation:

The first step is to think that you have to multiply the number of atoms for the weight of each atom.

When you work with scientific notation, you should solve the operation for numbers and for the ten base. In this case you solve 5.04 x 1.67 and then the product of the ten bases. For this product you have to sum the exponents of the ten base 23 + (-24) = -1.

Summarizing.... 5.04 x 10^23 x 1.67 x 10^-24 = (5.04 x 1.67) x (10^23x10^-24)  ⇒ 5.04 x 10^23 x 1.67 x 10^-24 = 8.4168 x 10^-1

⇒ 5.04 x 10^23 x 1.67 x 10^-24 = 0,84168.

You might be interested in
Given the area of a circle is 201.06cm2, find the diameter and circumference.
mestny [16]

given the area of circle o6.

5 0
3 years ago
Read 2 more answers
Question 16 (Essay Worth 7 points)<br><br> Verify the identity.<br><br> tan (x + π/2) = -cot x
Rus_ich [418]

Step-by-step explanation:

We know that tan=sin/cos, so tan(x+π/2)=

\frac{sin(x+pi/2)}{cos(x+pi/2)}

Then, we know that sin(u+v)=sin(u)cos(v)+cos(u)sin(v),

so our equation is then

\frac{sin(x)cos(\pi/2)+cos(x)sin(\pi/2)}{cos(x+\pi/2)}  = \frac{cos(x)}{cos(x+\pi/2) }

Then, cos(u+v)=cos(u)cos(v)-sin(u)sin(v), so our expression is then

\frac{cos(x)}{cos(x)cos(\pi/2)-sin(x)sin(\pi/2)} = \frac{cos(x)}{-sin(x)} = -cot(x)

6 0
3 years ago
3/4 - 2/5 bigger least than or equal to?
Hoochie [10]
3/4 is bigger than 2/5. Hope that helps
7 0
3 years ago
Read 2 more answers
P+1/p=7 then p^3+1/p^3
arlik [135]
This is your perfect answer

4 0
3 years ago
Use the given information to find (a) sin(s+t), (b) tan(s+t), and (c) the quadrant of s+t. cos s = - 12/13 and sin t = 4/5, s an
Anton [14]

Answer:

Part a) sin(s + t) =-\frac{63}{65}    

Part b) tan(s + t) = -\frac{63}{16}

Part c) (s+t) lie on Quadrant IV

Step-by-step explanation:

[Part a) Find sin(s+t)

we know that

sin(s + t) = sin(s) cos(t) + sin(t)cos(s)

step 1

Find sin(s)

sin^{2}(s)+cos^{2}(s)=1

we have

cos(s)=-\frac{12}{13}

substitute

sin^{2}(s)+(-\frac{12}{13})^{2}=1

sin^{2}(s)+(\frac{144}{169})=1

sin^{2}(s)=1-(\frac{144}{169})

sin^{2}(s)=(\frac{25}{169})

sin(s)=\frac{5}{13} ---> is positive because s lie on II Quadrant

step 2

Find cos(t)

sin^{2}(t)+cos^{2}(t)=1

we have

sin(t)=\frac{4}{5}

substitute

(\frac{4}{5})^{2}+cos^{2}(t)=1

(\frac{16}{25})+cos^{2}(t)=1

cos^{2}(t)=1-(\frac{16}{25})

cos^{2}(t)=\frac{9}{25}

cos(t)=-\frac{3}{5} is negative because t lie on II Quadrant

step 3

Find sin(s+t)

sin(s + t) = sin(s) cos(t) + sin(t)cos(s)

we have

sin(s)=\frac{5}{13}

cos(t)=-\frac{3}{5}

sin(t)=\frac{4}{5}

cos(s)=-\frac{12}{13}

substitute the values

sin(s + t) = (\frac{5}{13})(-\frac{3}{5}) + (\frac{4}{5})(-\frac{12}{13})

sin(s + t) = -(\frac{15}{65}) -(\frac{48}{65})

sin(s + t) =-\frac{63}{65}

Part b) Find tan(s+t)

we know that

tex]tan(s + t) = (tan(s) + tan(t))/(1 - tan(s)tan(t))[/tex]

we have

sin(s)=\frac{5}{13}

cos(t)=-\frac{3}{5}

sin(t)=\frac{4}{5}

cos(s)=-\frac{12}{13}

step 1

Find tan(s)

tan(s)=sin(s)/cos(s)

substitute

tan(s)=(\frac{5}{13})/(-\frac{12}{13})=-\frac{5}{12}

step 2

Find tan(t)

tan(t)=sin(t)/cos(t)

substitute

tan(t)=(\frac{4}{5})/(-\frac{3}{5})=-\frac{4}{3}

step 3

Find tan(s+t)

tan(s + t) = (tan(s) + tan(t))/(1 - tan(s)tan(t))

substitute the values

tan(s + t) = (-\frac{5}{12} -\frac{4}{3})/(1 - (-\frac{5}{12})(-\frac{4}{3}))

tan(s + t) = (-\frac{21}{12})/(1 - \frac{20}{36})

tan(s + t) = (-\frac{21}{12})/(\frac{16}{36})

tan(s + t) = -\frac{63}{16}

Part c) Quadrant of s+t

we know that

sin(s + t) =negative  ----> (s+t) could be in III or IV quadrant

tan(s + t) =negative ----> (s+t) could be in III or IV quadrant

Find the value of cos(s+t)

cos(s+t) = cos(s) cos(t) -sin (s) sin(t)

we have

sin(s)=\frac{5}{13}

cos(t)=-\frac{3}{5}

sin(t)=\frac{4}{5}

cos(s)=-\frac{12}{13}

substitute

cos(s+t) = (-\frac{12}{13})(-\frac{3}{5})-(\frac{5}{13})(\frac{4}{5})

cos(s+t) = (\frac{36}{65})-(\frac{20}{65})

cos(s+t) =\frac{16}{65}

we have that

cos(s+t)=positive -----> (s+t) could be in I or IV quadrant

sin(s + t) =negative  ----> (s+t) could be in III or IV quadrant

tan(s + t) =negative ----> (s+t) could be in III or IV quadrant

therefore

(s+t) lie on Quadrant IV

4 0
3 years ago
Other questions:
  • String A is three times the length of String B. Sarah cut String
    7·1 answer
  • 2x+4/5-6=8<br><br> I need help ASAP
    10·1 answer
  • A doctor has 12 000 patients. 4560 are male. what percentage is female ?
    5·1 answer
  • (-6 + 4v + 2u)(-4) solve using distributive property
    6·1 answer
  • Find the volume of the region bounded by z=x2, 0≤x≤2, and the planes y=0, y=7, and z=0.
    11·1 answer
  • Which step(s) are errors is it step 1 step 2 step 3 step4 or step 5?
    8·2 answers
  • Given the equation find f=4<br><br> F(x)=x+1
    5·1 answer
  • Problem 5
    12·1 answer
  • Express as a trinomial (x-10)(x+2)
    15·1 answer
  • Help anyone?? Not that hardd<br> no links ! :(
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!