Answer:
Option C is correct.
Step-by-step explanation:
An exponential is in the form of :
![f(x) = ab^x](https://tex.z-dn.net/?f=f%28x%29%20%3D%20ab%5Ex)
where
a is the initial value and
b is the growth factor.
If b> 1 , then the graph is increasing.
if 0<b<1, then the graph is decreasing.
Given the function:
![f(x) = 2^{x+3}](https://tex.z-dn.net/?f=f%28x%29%20%3D%202%5E%7Bx%2B3%7D)
we can write this as:
![f(x) = 2^x \cdot 2^3 = 8 \cdot 2^x](https://tex.z-dn.net/?f=f%28x%29%20%3D%202%5Ex%20%5Ccdot%202%5E3%20%3D%208%20%5Ccdot%202%5Ex)
⇒![f(x) =8 \cdot (2)^x](https://tex.z-dn.net/?f=f%28x%29%20%3D8%20%5Ccdot%20%282%29%5Ex)
Here, b = 2 > 1
y-intercept: The graph crosses the y-axis
Substitute x = 0 and solve for f(x):
![f(0) =8 \cdot (2)^0](https://tex.z-dn.net/?f=f%280%29%20%3D8%20%5Ccdot%20%282%29%5E0)
⇒![f(0) = 8](https://tex.z-dn.net/?f=f%280%29%20%3D%208)
⇒![a = 8](https://tex.z-dn.net/?f=a%20%3D%208)
Graph of this function:
We make table for some values of x;
x f(x)
-1 4
0 8
1 16
2 32
Note as x increase, f(x) increases
Now, plot these points on the coordinate plane.
You can see the graph of the given function shown below.