1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ICE Princess25 [194]
3 years ago
12

one possible combination of homeroom groups is 18 groups of 10 students and 5 groups of 12 students. which equation uses the x =

10 students and y=12 students, combination to represent the situation in point- slope form? is the answer y-18 =-5/6 (× - 5) ,y- 5 = - 5/6 (× -18) ,y +5 =-5/6 (× +18) or y+18= -5/6 (× +5)​
Mathematics
1 answer:
vfiekz [6]3 years ago
6 0

Answer: y - 5 = -5/6 (x - 18)

Step-by-step explanation:

The point-slope form of a linear equation is written using the slope of the line and one point in the line. From part A, the slope of the line representing this situation is m = -5/6.

Since x represents the number of 10-student groups and y represents the number of 12-student groups, the combination of 18 groups of 10 students and 5 groups of 12 students is represented by the point (18,5).

You might be interested in
1) Mr. Charles bought dinner for his family.
Brilliant_brown [7]
The correct answer is A
8 0
3 years ago
Solve this problem.<br><br> How high is the kite?
QveST [7]

Answer:

26.5 m

Step-by-step explanation:

this is the answer

7 0
3 years ago
What is the product (2x + 3y) (7x – 4y)?
cupoosta [38]

Answer:

14x²-12y²

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Plz help ill give you brainlist
Sloan [31]
The constant is 3 because it has no variable. 
The coefficient is 7b because it has a variable. 
7 0
3 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
Other questions:
  • Simplify.<br><br> 7/8+(−2/3) divided by <br> 5/6
    7·2 answers
  • Your teacher is giving a test worth 250 points. There are 68 questions. Some questions are worth 5 points and the rest are worth
    6·1 answer
  • The speedometer in Kevin's car reads in both miles/hour and kilometers/hour. What information is needed to convert between these
    10·1 answer
  • A survey found that 12 out of every 15 people in the United States prefer eating at a restaurant over cooking at home. if 400 pe
    6·2 answers
  • How do you find the point of intersection of two straight lines?using algebraic equations
    5·1 answer
  • What is the solution to the system?<br><br> X+y+z=2<br> 2x+y-z=-1<br> X=5-2z
    13·1 answer
  • 4(2x - 5) + 15 = 11
    12·1 answer
  • Use slopes to determine if the lines -7x-2y=-8 and 2x+7y=-3 are perpendicular or not
    6·1 answer
  • — 5х – 4у = -8<br> What’s the answer
    9·2 answers
  • PLEASE HELPPPP THE DROP DOWN MENUES ARE ALL THE SAME
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!