Answer:
Resultant force = 8.6N
Explanation:
Using Pythogorus' theorem

Resultant force = 8.6N
Positioning your Slinky along any direction different from its initial position will affect your reading, because there will be change in the magnetic field.
<h3>Effect of magnet on Slinky</h3>
If the Slinky is made of an iron alloy, it can be magnetized by itself. Moving the Slinky around can cause a change in the magnetic field, even if no current is flowing.
When there is a change in the magnetic field, the reading changes.
At any point, you change the orientation of the Slinky, you will need to zero the reading or adjust the Slinky back to its initial position, even if the sensor does not move.
Thus, Positioning your Slinky along any direction that is different to its initial position will affect your reading because there will be change in the magnetic field.
Learn more about magnetic field here: brainly.com/question/7802337
Answer: 529.9 Hz
Explanation:
Here we need to use the Doppler equation, so we have:
f' = f*(v + v0)/(v - vs)
Here, f is the frequency = 500Hz
v is the velocity of the wave, = 334m/s
v0 is the velocity of the observer = 20m/s
vs is the velocity of the source = 0m/s
Then we have:
f' = 500Hz*(334m/s + 20m/s)/(334m/s) = 529.9 Hz
1) Frequency: 
the energy of the photon absorbed must be equal to the ionization enegy of the atom, which is

The energy of a photon is given by

where
is the Planck's constant. By using the energy written above and by re-arranging thsi formula, we can calculate the frequency of the photon:

2) Wavelength: 91.2 nm
The wavelength of the photon can be found from its frequency, by using the following relationship:

where
is the speed of light and f is the frequency. Substituting the frequency, we find
