Answer:
Explanation:
Given
Initial speed 
distance traveled before coming to rest 
using equation of motion

where v=final velocity
u=initial velocity
a=acceleration
s=displacement

for 
using same relation we get

divide 1 and 2 we get


So a distance if 213.32 ft is required to stop the vehicle with 80 mph speed
Answer:
t = 6 [s]
Explanation:
In order to solve this problem we must first use this equation of kinematics.

where:
Vf = final velocity = 0 (the car comes to rest)
Vo = initial velocity = 72 [km/h]
a = acceleration [m/s²]
x = distance = 60 [m]
First we must convert the velocity from kilometers per hour to meters per second.
![72 [\frac{km}{h}]*\frac{1000m}{1km} *\frac{1h}{3600s} =20 [m/s]](https://tex.z-dn.net/?f=72%20%5B%5Cfrac%7Bkm%7D%7Bh%7D%5D%2A%5Cfrac%7B1000m%7D%7B1km%7D%20%2A%5Cfrac%7B1h%7D%7B3600s%7D%20%3D20%20%5Bm%2Fs%5D)
![0=(20)^{2} -2*a*60\\400 = 120*a\\a=3.33[m/s^{2} ]](https://tex.z-dn.net/?f=0%3D%2820%29%5E%7B2%7D%20-2%2Aa%2A60%5C%5C400%20%3D%20120%2Aa%5C%5Ca%3D3.33%5Bm%2Fs%5E%7B2%7D%20%5D)
Now using this other equation of kinematics.

0 = 20-3.33*t
t = 6[s]
To the right, if you push something left the friction is to the right
Answer:
pulling force
Explanation:
because the person is pulling that cart.