Answer:
vp = 0.94 m/s
Explanation
Formula
Vp = position/ time
position: Initial position - Final position
Position = 25 m - (-7 m) = 25 m + 7 m = 32 m
Then
Vp = 32 m / 34 seconds
Vp = 0.94 m/s
Answer:
The frequency of sound wave created by trumpet is 437.5Hz
Explanation:
Given
the speed of sound wave = 350 m
the wavelength of sound wave = 0.8 m
the frequency of sound wave = ?
All the waves have same relationship among wavelength, frequency and speed, which is given by the equation:
v = fλ, where
v is speed of the wave
f is frequency of the wave
λ is wavelength of the wave
therefore frequency of sound wave is given by
f = v/λ
= 350m
/0.8m
= 437.5
= 437.5Hz (since 1
= 1 Hz (Hertz)
Hence the frequency of sound wave created by trumpet is 437.5Hz
Mechanical energy is the sum of kinetic energy and potential energy
Answer:
v = 3.00 x 10⁸ m/s
Explanation:
given,
speed of light in vacuum = 299,792,458 m/s
speed of light in scientific notation to three significant figures
v = 2.99792458 x 10⁸ m/s
by rounding off the speed to three significant figure.
v = 3.00 x 10⁸ m/s
On the fourth place the value is greater than 5 so, on the third place 1 will be added.
now, the speed with three significant figure comes out to be
v = 3.00 x 10⁸ m/s
Answer:
velocity during second d = 20.0 mi/h
Explanation:
Total distance travelled is 2d, with an average velocity of 30.0 mi/h you can express the time travelled in terms of d:
distance = velocity * time
time = distance / velocity
time = 2d/30.0
The time needed for the first d at 60.0 is:
time = d/60.0
The time in the second d you can get it by substracting both times (total time - time for the first d)
second d time = 2d/30.0 - d/60.0
= 4d/60.0 - d/60.0
= 3d/60.0
and with the time (3d/60.0) and the distance travelled (d) you can get the velocity:
velocity = distance / time
velocity = d / (3d/60.0)
= 60.0/3 = 20.0 mi/h