A researcher wishes to examine the relationship between years of schooling completed and the number of pregnancies in young wome
n. Her research discovers a linear relationship, and the least squares line is: ˆ y = 3 − 5 x y^=3-5x where x is the number of years of schooling completed and y is the number of pregnancies. The slope of the regression line can be interpreted in the following way: 1.) When amount of schooling increases by one year, the number of pregnancies decreases by 4.
2.) When amount of schooling increases by one year, the number of pregnancies increases by 4.
3.) When amount of schooling increases by one year, the number of pregnancies increases by 5.
4.) When amount of schooling increases by one year, the number of pregnancies decreases by 5.
1. When amount of schooling increases by one year, the number of pregnancies will decrease by 4.
Step-by-step explanation:
Regression analysis is a statistical technique which is used for forecasting. It determines the relationship between two variables. It determines the relationship of two or more dependent and independent variables. It is widely used in stats to find trend in the data. It helps to predict the values of dependent and independent variables. In the given question, there is regression equation given. X and Y are considered as dependent variables. When number of schooling increases by 1 year then number of pregnancies will decrease by 4