Answer:
m<PTR = 140°
Step-by-step explanation:
First, find the value of x. To find the value of x, derive an equation which you'd use in solving for x.
m<PTQ = (x + 28)°
m<RTS = (2x + 16)°
m<PTQ = m<RTS (vertical opposite angles are congruent)
Therefore:
x + 28 = 2x + 16
Solve for x. Combine like terms
28 - 16 = 2x - x
12 = x
x = 12
Find m<PTQ
m<PTQ = (x + 28)
plug in the value of x
m<PTQ = 12 + 28 = 40°
m<PTR + m<PTQ = 180° (supplementary angles)
m<PTR + 40° = 180° (substitution)
m<PTR = 180 - 40 (subtracting 40 from each side)
m<PTR = 140°
Answer:
b
Step-by-step explanation:
Answer:
The 84% confidence interval for the population proportion that claim to always buckle up is (0.74, 0.80).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the z-score that has a p-value of
.
They randomly survey 387 drivers and find that 298 claim to always buckle up.
This means that 
84% confidence level
So
, z is the value of Z that has a p-value of
, so
.
The lower limit of this interval is:

The upper limit of this interval is:

The 84% confidence interval for the population proportion that claim to always buckle up is (0.74, 0.80).
The answer is 42 cm , all you have to do is add everything up