Answer:




Solving for
we got
and replacing this we got:



And then the best option for this case would be:
b.csc x
Step-by-step explanation:
For this case we have the following expression given:

We know from math properties that the definition for cot is 
If we use this definition we got:


Now we can use the following identity:

Solving for
we got
and replacing this we got:



And then the best option for this case would be:
b.csc x
I don't know which one is underlined so I will write it out in words.
One million seven hundred and eleven thousand and seven hundred ninety-nine.
Hope I helped :)
Answer:
1. the translation from the original to the translated figure was 2 units up and 1 unit to the left
2. the points of the translated figure if it were translated 2 units down and 3 units to the right would be: A' (4,0), B' (6,-6), C' (5,3), D' (-1,0)
Step-by-step explanation:
(a) The "average value" of a function over an interval [a,b] is defined to be
(1/(b-a)) times the integral of f from the limits x= a to x = b.
Now S = 200(5 - 9/(2+t))
The average value of S during the first year (from t = 0 months to t = 12 months) is then:
(1/12) times the integral of 200(5 - 9/(2+t)) from t = 0 to t = 12
or 200/12 times the integral of (5 - 9/(2+t)) from t= 0 to t = 12
This equals 200/12 * (5t -9ln(2+t))
Evaluating this with the limits t= 0 to t = 12 gives:
708.113 units., which is the average value of S(t) during the first year.
(b). We need to find S'(t), and then equate this with the average value.
Now S'(t) = 1800/(t+2)^2
So you're left with solving 1800/(t+2)^2 = 708.113
<span>I'll leave that to you</span>
Answer:
1 x=-2.5 y = -5.5
2. x=5 y=1
Step-by-step explanation:
1) What is the solution of the given system?
5x-y=-7
3x-y=-2
Multiply the second equation by -1
-1*(3x-y)=-1(-2)
-3x +y = 2
Now add the first equation to the modified second equation
5x-y=-7
-3x +y = 2
------------------
2x = -5
Divide each side by 2
2x/2 = -5/2
x = -2.5
Now we need to find y
-3x+y =2
-3(-2.5) +y =2
7.5 +y =2
Subtract 7.5 from each side
7.5 -7.5 +y =2-7.5
y = -5.5
2) what is the solution of the given system?
5x+7y=32
8x+6y=46
Divide the second equation by 2
8x/2+6y/2=46/2
4x+3y =23
Multiply the first equation by 4
4 (5x+7y)=32*4
20x+28y = 128
Now multiply the modified 2nd equation by -5
-5(4x+3y )=-5(23
)
-20x -15y = -115
Lets add the new equations together to eliminate x
20x+28y = 128
-20x -15y = -115
---------------------
13y = 13
Divide each side by 13
13y/13 =13/13
y=1
Now substitute back in to find x
5x+7y=32
5x +7(1) =32
5x +7 =32
Subtract 7 from each side
5x+7-7 =32-7
5x =25
Divide by 5
5x/5 =25/5
x=5