Problem 1
<h3>Answer: False</h3>
---------------------------------
Explanation:
The notation (f o g)(x) means f( g(x) ). Here g(x) is the inner function.
So,
f(x) = x+1
f( g(x) ) = g(x) + 1 .... replace every x with g(x)
f( g(x) ) = 6x+1 ... plug in g(x) = 6x
(f o g)(x) = 6x+1
Now let's flip things around
g(x) = 6x
g( f(x) ) = 6*( f(x) ) .... replace every x with f(x)
g( f(x) ) = 6(x+1) .... plug in f(x) = x+1
g( f(x) ) = 6x+6
(g o f)(x) = 6x+6
This shows that (f o g)(x) = (g o f)(x) is a false equation for the given f(x) and g(x) functions.
===============================================
Problem 2
<h3>Answer: True</h3>
---------------------------------
Explanation:
Let's say that g(x) produced a number that wasn't in the domain of f(x). This would mean that f( g(x) ) would be undefined.
For example, let
f(x) = 1/(x+2)
g(x) = -2
The g(x) function will always produce the output -2 regardless of what the input x is. Feeding that -2 output into f(x) leads to 1/(x+2) = 1/(-2+2) = 1/0 which is undefined.
So it's important that the outputs of g(x) line up with the domain of f(x). Outputs of g(x) must be valid inputs of f(x).
Answer:
<u>77</u> is the quotient of 1,078 and 14.
Step-by-step explanation:
quotient is the answer to a division problem.
numerator/denominator = quotient
1,078/14 = quotient
1,078/14 = <u>77</u>
Have a nice day!
Answer:
-3, 1, 5, 9
Step-by-step explanation:
2(2) - 7 = -3
2(4) - 7 = 1
2(6) - 7 = 5
2(8) - 7 = 9
Answer:
Step-by-step explanation:
center is (-2,3)