Answer:
Σ(-1)^kx^k for k = 0 to n
Step-by-step explanation:
The nth Maclaurin polynomials for f to be
Pn(x) = f(0) + f'(0)x + f''(0)x²/2! + f"'(0)x³/3! +. ......
The given function is.
f(x) = 1/(1+x)
Differentiate four times with respect to x
f(x) = 1/(1+x)
f'(x) = -1/(1+x)²
f''(x) = 2/(1+x)³
f'''(x) = -6/(1+x)⁴
f''''(x) = 24/(1+x)^5
To calculate with a coefficient of 1
f(0) = 1
f'(0) = -1
f''(0) = 2
f'''(0) = -6
f''''(0) = 24
Findinf Pn(x) for n = 0 to 4.
Po(x) = 1
P1(x) = 1 - x
P2(x) = 1 - x + x²
P3(x) = 1 - x+ x² - x³
P4(x) = 1 - x+ x² - x³+ x⁴
Hence, the nth Maclaurin polynomials is
1 - x+ x² - x³+ x⁴ +.......+(-1)^nx^n
= Σ(-1)^kx^k for k = 0 to n
Answer:
the solutions of a function are the points where for some value of x the function becomes zero
thus the solns for this graph would be
<h3>-3 , 2</h3>
that's option 1.
Let y = the length of the 3rd side
x+3 + 2x+4 + y = 6x
x + 2x + 3 + 4 + y = 6x
3x + 7 +y = 6x
7 + y = 3x
y = 3x - 7
The length of the third side in terms of x is 3x-7
Dude stop commenting that people need real answer not a link
You have it correct the answer is 20