The answer is: "
44
km " ;
or; write as: "
44.333 km " .
___________________________________________________________Explanation:___________________________________________________________(70 km + 63 km) ÷ (2 + 1 ) = 133 km ÷ 3 = "
44
km " ;
or; write as: "
44.333 km " .
___________________________________________________________
<u>Answer:</u>
<em>To relate the type of box material to the warmth inside the box
</em>
<u>Explanation:</u>
3 boxes are made with three different materials glass, plastic and Aluminium. Thermal conductivity is different for different materials. thermal conductors allow easy flow of heat through them and insulators allow minimal or no flow of heat through them.
Thus the amount by which an object gets heated up depends on the value of its conductivity. In this experiment, glass and plastic are insulators and aluminium is a conductor. Among glass and plastic, plastic is a better insulator.
<em>Thus the heat contained in the boxes will be of the order </em>Aluminium>glass>plastic.
Answer:
Potential
Explanation:
The most accurate term is Electrostatic potential energy
It's named like this because the force between charges or electrons is called electrostatic force .
Answer:
a. dW = ∫pEsinθdθ b. W = p.E
Explanation:
a. We know torque τ = p × E = pEsinθ where θ is the angle between p and E
Let the torque τ rotate the dipole by an amount dθ. So, the workdone dW = ∫τdθ = ∫pEsinθdθ
b. So, the total work done is gotten by integrating from 90 to θ. So,
W = ∫₉₀⁰dW
= ∫₉₀⁰pEsinθdθ
= pE∫₉₀⁰sinθdθ
= pE(cosθ - cos90)
=pEcosθ
= p.E
1. A. 6.00 sec
The graph shows the velocity of an object (y-axis) versus the time (x-axis). In order to find when the magnitude of the velocity reaches 36.00 km/h, we should find the time t (x-coordinate) at which the velocity (y-coordinate) is 36.
By looking at the graph, we see that this occurs when t=6.00 s.
2. A. positive acceleration
In a velocity-time graph like this one, the slope of the curve corresponds to the acceleration of the object. In fact, acceleration is defined as:

where
is the variation of velocity and
is the variation of time. We see that this quantity corresponds to the slope of the curve in the graph (in fact,
represents the increment of the y coordinate, while
represents the increment of the x coordinate). So, a positive slope means a positive acceleration: in this case, the slope is positive, so the acceleration is also positive.