Answer:
1 greater distances fallen in successive seconds
Explanation:
When a body falls freely it is subjected to the action of the force of gravity, which gives an acceleration of 9.8 m / s2, consequently, we are in an accelerated movement
If we use the kinematic formula we can find the position of the body
Y = Vo t + ½ to t2
Where the initial velocity is zero or constant and the acceleration is the acceleration of gravity
Y = - ½ g t2 = - ½ 9.8 t2 = -4.9 t2
Let's look for the position for successive times
t (s) Y (m)
1 -4.9
2 -19.6
3 -43.2
The sign indicates that the positive sense is up
It can be clearly seen that the distance is greatly increased every second that passes
We determine the electric potential energy of the proton by multiplying the net electric potential to the charge of the proton. The net electric potential is the difference of the final state to the that of the initial state. So, it would be 275 - 125 = 150 V.
electric potential energy = 150 (<span>1.602 × 10-19) = 2.4x10^-17 J</span>
Answer:
The instantaneous velocity is the specific rate of change of position (or displacement) with respect to time at a single point (x,t) , while average velocity is the average rate of change of position (or displacement) with respect to time over an interval.Average velocity : Average velocity of a body is defined as the change in position or displacement (Δx) divided by time interval (Δt) in which that displacement occurs.
Instantaneous velocity : The instantaneous velocity of a body is the velocity of the body at any instant of time or at any point of its path .
velocity can be positive , negative or zero.
By studying speed and velocity we come to the result that at any time interval average speed of an object is equal or more than the average but instantaneous speed is equal to instantaneous velocity.
Double displacement...I think
To solve this problem it is necessary to use the conservation equations of both kinetic, rotational and potential energy.
By definition we know that

Where,
KE =Kinetic Energy
KR = Rotational Kinetic Energy
PE = Potential Energy
In this way

Where,
m = mass
v= Velocity
I = Moment of Inertia
Angular velocity
g = Gravity
h = Height
We know as well that
for velocity (v) and Radius (r)
Therefore replacing we have

[/tex]



Therefore the height must be 0.3915 for the yo-yo fall has a linear speed of 0.75m/s