Answer:
n physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion.[1] It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.
In classical mechanics, the kinetic energy of a non-rotating object of mass m traveling at a speed v is {\displaystyle {\begin{smallmatrix}{\frac {1}{2}}mv^{2}\end{smallmatrix}}}{\begin{smallmatrix}{\frac {1}{2}}mv^{2}\end{smallmatrix}}. In relativistic mechanics, this is a good approximation only when v is much less than the speed of light.
The standard unit of kinetic energy is the joule, while the imperial unit of kinetic energy is the foot-pound.
Explanation:
Answer:
The concentration of hydrogen ion at pH is equal to 2 :![= [H^+]=0.01 mol/L](https://tex.z-dn.net/?f=%3D%20%5BH%5E%2B%5D%3D0.01%20mol%2FL)
The concentration of hydrogen ion at pH is equal to 6 : ![[H^+]'=0.000001 mol/L](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%27%3D0.000001%20mol%2FL)
There are 0.009999 more moles of
ions in a solution at a pH = 2 than in a solution at a pH = 6.
Explanation:
The pH of the solution is the negative logarithm of hydrogen ion concentration in an aqueous solution.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)
The hydrogen ion concentration at pH is equal to 2 = [H^+]
![2=-\log [H^+]\\](https://tex.z-dn.net/?f=2%3D-%5Clog%20%5BH%5E%2B%5D%5C%5C)
![[H^+]=10^{-2}M= 0.01 M=0.01 mol/L](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-2%7DM%3D%200.01%20M%3D0.01%20mol%2FL)
The hydrogen ion concentration at pH is equal to 6 = [H^+]
![6=-\log [H^+]\\\\](https://tex.z-dn.net/?f=6%3D-%5Clog%20%5BH%5E%2B%5D%5C%5C%5C%5C)
![[H^+]=10^{-6}M= 0.000001 M= 0.000001 mol/L](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-6%7DM%3D%200.000001%20M%3D%200.000001%20mol%2FL)
Concentration of hydrogen ion at pH is equal to 2 =![[H^+]=0.01 mol/L](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.01%20mol%2FL)
Concentration of hydrogen ion at pH is equal to 6 = ![[H^+]'=0.000001 mol/L](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%27%3D0.000001%20mol%2FL)
The difference between hydrogen ion concentration at pH 2 and pH 6 :
![= [H^+]-[H^+]' = 0.01 mol/L- 0.000001 mol/L = 0.009999 mol/L](https://tex.z-dn.net/?f=%3D%20%5BH%5E%2B%5D-%5BH%5E%2B%5D%27%20%3D%200.01%20mol%2FL-%200.000001%20mol%2FL%20%3D%200.009999%20mol%2FL)
Moles of hydrogen ion in 0.009999 mol/L solution :

There are 0.009999 more moles of
ions in a solution at a pH = 2 than in a solution at a pH = 6.
If the solution is treated as an ideal solution, the extent of freezing
point depression depends only on the solute concentration that can be
estimated by a simple linear relationship with the cryoscopic constant:
ΔTF = KF · m · i
ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF
(solution).
KF, the cryoscopic constant, which is dependent on the properties of the
solvent, not the solute. Note: When conducting experiments, a higher KF
value makes it easier to observe larger drops in the freezing point.
For water, KF = 1.853 K·kg/mol.[1]
m is the molality (mol solute per kg of solvent)
i is the van 't Hoff factor (number of solute particles per mol, e.g. i =
2 for NaCl).
Answer:
Power is 1061.67W
Explanation:
Power=force×distance/time
Power=65×9.8×15/9 assuming gravity=9.8m/s²
Power=3185/3=1061.67W