Answer:
C
Explanation:
thats what i think it depends on the amount of force someone dropped the ball with.
Answer:
The frequency heard by the motorist is 4313.2 Hz.
Explanation:
let f1 be the frequency emited by the police car and f2 be the frequency heard by the motorist, let v1 be the speed of the police car and v2 be the speed of the motorist and v = 343 m/s be the speed of sound.
because the police car is moving towards the motorist at a higher speed, then the motorist will hear a increasing frequency and according to Dopper effect, that frequency is given by:
f1 = [(v + v2/(v - v1))]×(f2)
= [( 343 + 30)/(343 - 36)]×(3550)
= 4313.2 Hz
Therefore, the frequency heard by the motorist is 4313.2 Hz.
The correct answer to the question is : 
EXPLANATION :
As per the question, the specific heat of gold is given as c = 
The heat given to the gold dQ = 195 J
The mass of the gold is given as m = 15 gram.
We are asked to calculate the change in temperature.
Let the change in temperature is dT.
We know that dQ = mcdT

[ANS]
Hence, the change in temperature is 100 degree celsius.
Answer:
0.37sec
Explanation:
Period of oscillation of a simple pendulum of length L is:
T
=
2
π
×
√
(L
/g)
L=length of string 0.54m
g=acceleration due to gravity
T-period
T = 2 x 3.14 x √[0.54/9.8]
T = 1.47sec
An oscillating pendulum, or anything else in nature that involves "simple harmonic" (sinusoidal) motion, spends 1/4 of its period going from zero speed to maximum speed, and another 1/4 going from maximum speed to zero speed again, etc. After four quarter-periods it is back where it started.
The ball will first have V(max) at T/4,
=>V(max) = 1.47/4 = 0.37 sec
Answer:
Solar eclipse
Explanation:
A solar eclipse is when the moon passes between the sun and Earth, causing it to go dark and to give the moon a halo effect :D hope this helped!