Answer:
a) i = -9.63 cm
, h ’= .0.24075 cm erect
b) i = 259.74 cm
,
Explanation:
For this exercise let's start by finding the focal length of the lens
1 / f = (n-1) (1 / R₁ - 1 / R₂)
1 / f = (1.70 -1)) 1 / ∞ - 1/13)
1 / f = 0.0538
f = - 18.57 cm
Now we can use the constructor equation
1 / f = 1 / o + 1 / i
1 / i = 1 / f - 1 / o
1 / i = -1 / 18.57 -1/20
1 / i = -0.1038 cm
I = -9.63 cm
For the height of the
image let's use magnification
m = h '/ h = - i / o
h ’= -h i / o
h ’= - 0.5 (-9.63) / 20
h ’= .0.24075 cm
b) we invert the lens
The focal length is
1 / f = (1.70 -1) (1/13 - 1 / int)
1 / f = 0.0538
f = 18.57 cm
1 / i = 1 / f -1 / o
1 / I = 1 / 18.57 - 1/20
1 / I = 3.85 10-3
i = 259.74 cm
h ’= - 0.5 259.74 / 20
h ’= 6.4935 cm
An inner transition metal (ITM) is one of a group of chemical elements on the periodic table. They are normally shown in two rows below all the other elements. They include elements 57-71 (lanthanides) and 89-103 (actinides).
There's not enough information to find an answer.
I think the idea here is that in descending (416 - 278) = 138 meters,
the glider gives up some gravitational potential energy, which
becomes kinetic energy at the lower altitude. This is all well and
good, but we can't calculate the difference in potential energy
without knowing the mass of the glider.
<h2>
The answer got is reasonable.</h2>
Explanation:
We have equation of motion v² = u² + 2as
Initial velocity, u = 300 m/s
Acceleration, a = ?
Final velocity, v = 400 m/s
Displacement,s = 4 km = 4000 m
Substituting
v² = u² + 2as
400² = 300² + 2 x a x 4000
a = 8.75 m/s² = 8.8 m/s²
The acceleration is 8.8 m/s²
The answer got is reasonable.