Answer:
pH = 2.66
Explanation:
- Acetic Acid + NaOH → Sodium Acetate + H₂O
First we <u>calculate the number of moles of each reactant</u>, using the <em>given volumes and concentrations</em>:
- 0.75 M Acetic acid * 50.0 mL = 37.5 mmol acetic acid
- 1.0 M NaOH * 10.0 mL = 10 mmol NaOH
We<u> calculate how many acetic acid moles remain after the reaction</u>:
- 37.5 mmol - 10 mmol = 27.5 mmol acetic acid
We now <u>calculate the molar concentration of acetic acid after the reaction</u>:
27.5 mmol / (50.0 mL + 10.0 mL) = 0.458 M
Then we <u>calculate [H⁺]</u>, using the<em> following formula for weak acid solutions</em>:
- [H⁺] =

Finally we <u>calculate the pH</u>:
Answer:
D) winds that blow in the same direction at a consistent speed
Explanation:
i took the quiz got it right so i know the answer please trust me i know this is right i promise with all my heart
<u>Answer:</u>
<u>For 1:</u> Neutralization reaction
<u>For 2: </u>Zinc is more reactive than lead and less reactive than calcium.
<u>Explanation:</u>
When a base reacts with an acid to form a salt and water molecule, it is known as a neutralization reaction. The general equation follows:

The chemical equation for the reaction of calcium hydroxide and nitric acid follows:

A single displacement reaction is defined as the reaction in which a more reactive metal displaces a less reactive metal from its salt solution. The general chemical equation follows:

where,
Metal A is more reactive than metal B
The reactivity of metals is judged by the reactivity series where a metal lying above in the series is more reactive than the metal lying below it.
From the reactivity series below,
Zinc lies above in the series than lead thus is more reactive and will easily replace lead from its aqueous solution.
While zinc lies below in the series than calcium thus is less reactive and will not easily replace calcium from its aqueous solution.


<span>Estradiol is a type of steroid produced by the ovaries and it is strong that could cause gynecological problems and cancer.</span>
Answer:
The correct answer is "Electrons are transferred in an ionic bond"
Explanation:
The covalent bond is the chemical bond between atoms where electrons are shared, forming a molecule. Covalent bonds are established between non-metallic elements, such as hydrogen H, oxygen O and chlorine Cl. These elements have many electrons in their outermost level (valence electrons) and have a tendency to gain electrons to acquire the stability of the electronic structure of noble gas. The shared electron pair is common to the two atoms and holds them together.
An ionic bond is produced between metallic and non-metallic atoms, where electrons are completely transferred from one atom to another. During this process, one atom loses electrons and another one gains them, forming ions. Usually, the metal gives up its electrons forming a cation to the nonmetal element, which forms an anion.
In conclusion, chemical bonds are made so that atoms can have their entire outer layer, and thus have a stable electronic configuration. In the ionic bond, when the metallic atom has only one electron in its outer layer and the non-metallic one needs an electron to complete its layer; The metallic atom seats its electron to the non-metallic one. In the same way, the electron is shared in the covalent bond in order to achieve equilibrium.
Then, the main differences between the two bonds are that the ionic bond occurs between two different atoms (metallic and non-metallic), while the covalent bond occurs between two equal atoms (non-metallic). And in the covalent bond there is an electron compartment, while in the ionic bond there is an electron transfer.
So, the correct answer is "Electrons are transferred in an ionic bond"