Answer: The partial pressure of oxygen in the mixture is 321 mm Hg
Explanation:
According to Dalton's law, the total pressure is the sum of individual pressures.

Given :
= total pressure of gases = 752 mm Hg
= partial pressure of Helium = 234 mm Hg
= partial pressure of nitrogen = 197 mm Hg
= partial pressure of oxygen = ?
Putting in the values we get:


The partial pressure of oxygen in the mixture is 321 mm Hg
Answer:
8.08 × 10⁻⁴
Explanation:
Let's consider the following reaction.
COCl₂(g) ⇄ CO (g) + Cl₂(g)
The initial concentration of phosgene is:
M = 2.00 mol / 1.00 L = 2.00 M
We can find the final concentrations using an ICE chart.
COCl₂(g) ⇄ CO (g) + Cl₂(g)
I 2.00 0 0
C -x +x +x
E 2.00 -x x x
The equilibrium concentration of Cl₂, x, is 0.0398 mol / 1.00 L = 0.0398 M.
The concentrations at equilibrium are:
[COCl₂] = 2.00 -x = 1.96 M
[CO] = [Cl₂] = 0.0398 M
The equilibrium constant (Keq) is:
Keq = [CO].[Cl₂]/[COCl₂]
Keq = (0.0398)²/1.96
Keq = 8.08 × 10⁻⁴
Answer- 33.4 kJ
Explanation-
100 g H2O x (1mol/18g) = 5.5 mol
q=(5.5 mol)(6.01 KJ/mol)= 33.4 kJ
When non-metal atoms ionize they gain electrons.<span> Some examples of this are the halogen elements: F, Cl, Br and I, each, can gain one electron from the respective anions, F-, Cl-, Br-, and I-. O and S, may gain two electrons to form the anions O2- and S2-. This is due to the fact that those elements only need one (in the case of the halogens) or two (in the case of O and S) electrons to reach the most stable configuration of the closest noble gas (with the last shell of electrons full), so they are ready to gain those electrons and form the corresponding ions.</span>