1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mojhsa [17]
2 years ago
13

The product of two fractions that are each between 0 and 1 is also between 0 and 1.Is this true or false?

Mathematics
2 answers:
Ksenya-84 [330]2 years ago
7 0
True 

merry Christmas and a happy new year :)
pogonyaev2 years ago
6 0
False. For example, 7/10+7/10= 1.4
You might be interested in
A rhombus, which is a quadrilateral with 4 equal sides, is plotted on the coordinate plane. The coordinates of the vertices are:
AlekseyPX
If it is a rhombus then you know each side is the same length, so only have to work out one side. To do this you have to use Pythagoras' theorem (a^2 + b^2 = c^2)
So take two sets of coordinates, for example, (0,3) and (5,3), a and b represent the height difference and the length difference. Therefore (5-0)^2 + (3-3)^2 = c^2
c^2 = 25
c = 5 , which would be the side of the rhombus
3 0
2 years ago
Read 2 more answers
  Why only one of the intercepts is enough to determine a line function when the slope is constant?
dybincka [34]

Answer:

Step-by-step explanation:

none of above

Ur welcome

5 0
2 years ago
Sarah built a table uding 6 pieces of wood that were each 3 3/4 wide. How wide was the table?
prisoha [69]

The table was <em><u>22.5 inches wide</u></em>.

hope this helps!

3 0
3 years ago
Read 2 more answers
The graph of an exponential function is given. Which of the following is the correct equation of the function?
katen-ka-za [31]

Answer:

If one of the data points has the form  

(

0

,

a

)

, then a is the initial value. Using a, substitute the second point into the equation  

f

(

x

)

=

a

(

b

)

x

, and solve for b.

If neither of the data points have the form  

(

0

,

a

)

, substitute both points into two equations with the form  

f

(

x

)

=

a

(

b

)

x

. Solve the resulting system of two equations in two unknowns to find a and b.

Using the a and b found in the steps above, write the exponential function in the form  

f

(

x

)

=

a

(

b

)

x

.

EXAMPLE 3: WRITING AN EXPONENTIAL MODEL WHEN THE INITIAL VALUE IS KNOWN

In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180 deer. The population was growing exponentially. Write an algebraic function N(t) representing the population N of deer over time t.

SOLUTION

We let our independent variable t be the number of years after 2006. Thus, the information given in the problem can be written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input variable to be measured as years after 2006, we have given ourselves the initial value for the function, a = 80. We can now substitute the second point into the equation  

N

(

t

)

=

80

b

t

to find b:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N

(

t

)

=

80

b

t

180

=

80

b

6

Substitute using point  

(

6

,

180

)

.

9

4

=

b

6

Divide and write in lowest terms

.

b

=

(

9

4

)

1

6

Isolate  

b

using properties of exponents

.

b

≈

1.1447

Round to 4 decimal places

.

NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final answer to four places for the remainder of this section.

The exponential model for the population of deer is  

N

(

t

)

=

80

(

1.1447

)

t

. (Note that this exponential function models short-term growth. As the inputs gets large, the output will get increasingly larger, so much so that the model may not be useful in the long term.)

We can graph our model to observe the population growth of deer in the refuge over time. Notice that the graph below passes through the initial points given in the problem,  

(

0

,

8

0

)

and  

(

6

,

18

0

)

. We can also see that the domain for the function is  

[

0

,

∞

)

, and the range for the function is  

[

80

,

∞

)

.

Graph of the exponential function, N(t) = 80(1.1447)^t, with labeled points at (0, 80) and (6, 180).If one of the data points has the form  

(

0

,

a

)

, then a is the initial value. Using a, substitute the second point into the equation  

f

(

x

)

=

a

(

b

)

x

, and solve for b.

If neither of the data points have the form  

(

0

,

a

)

, substitute both points into two equations with the form  

f

(

x

)

=

a

(

b

)

x

. Solve the resulting system of two equations in two unknowns to find a and b.

Using the a and b found in the steps above, write the exponential function in the form  

f

(

x

)

=

a

(

b

)

x

.

EXAMPLE 3: WRITING AN EXPONENTIAL MODEL WHEN THE INITIAL VALUE IS KNOWN

In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180 deer. The population was growing exponentially. Write an algebraic function N(t) representing the population N of deer over time t.

SOLUTION

We let our independent variable t be the number of years after 2006. Thus, the information given in the problem can be written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input variable to be measured as years after 2006, we have given ourselves the initial value for the function, a = 80. We can now substitute the second point into the equation  

N

(

t

)

=

80

b

t

to find b:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N

(

t

)

=

80

b

t

180

=

80

b

6

Substitute using point  

(

6

,

180

)

.

9

4

=

b

6

Divide and write in lowest terms

.

b

=

(

9

4

)

1

6

Isolate  

b

using properties of exponents

.

b

≈

1.1447

Round to 4 decimal places

.

NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final answer to four places for the remainder of this section.

The exponential model for the population of deer is  

N

(

t

)

=

80

(

1.1447

)

t

. (Note that this exponential function models short-term growth. As the inputs gets large, the output will get increasingly larger, so much so that the model may not be useful in the long term.)

We can graph our model to observe the population growth of deer in the refuge over time. Notice that the graph below passes through the initial points given in the problem,  

(

0

,

8

0

)

and  

(

6

,

18

0

)

. We can also see that the domain for the function is  

[

0

,

∞

)

, and the range for the function is  

[

80

,

∞

)

.

Graph of the exponential function, N(t) = 80(1.1447)^t, with labeled points at (0, 80) and (6, 180).

Step-by-step explanation:

4 0
2 years ago
What is the base in -5x2
arlik [135]

Answer:

Step-by-step explanation:

10 lol

6 0
3 years ago
Read 2 more answers
Other questions:
  • Stanley wants to know how many students in his school enjoy watching talk shows on TV. He asks this question to all 24 students
    5·1 answer
  • What factors does 2 have?
    12·1 answer
  • What the freak is this 4^(x)-2^(x+1)=48
    5·2 answers
  • Point is (-4,-1) and parallel to the line 3x <br> -2y=4
    8·2 answers
  • Which of the following statements is false?
    10·1 answer
  • I don't really understand it's due soon can someone please help me​
    5·2 answers
  • John took a math test and got 19 out of 25 questions correct. What percent of the questions did he answer correctly ?. Single ch
    13·2 answers
  • Factor the expression.<br><br> 6x + 6
    14·2 answers
  • A factory makes sheets of metal that are 7/10 of an inch thick. If a worker at the factory makes a stack of 71 of the sheets, ho
    7·1 answer
  • HELP ME PLEASE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!