Answer:
1. D. 20, 30, and 50
2. A. 86
3. B. 94
Step-by-step explanation:
1. To find the outliers of the data set, we need to determine the Q1, Q3, and IQR.
The Q1 is the middle data in the lower part (first 10 data values) of the data set (while the Q3 is the middle data of the upper part (the last 10 data values) the data set.
Since it is an even data set, therefore, we would look for the average of the 2 middle values in each half of the data set.
Thus:
Q1 = (85 + 87)/2 = 86
Q3 = (93 + 95)/2 = 94
IQR = Q3 - Q1 = 94 - 86
IQR = 8
Outliers in the data set are data values below the lower limit or above the upper limit.
Let's find the lower and upper limit.
Lower limit = Q1 - 1.5(IQR) = 86 - 1.5(8) = 74
The data values below the lower limit (74) are 20, 30, and 50
Let's see if we have any data value above the upper limit.
Upper limit = Q3 + 1.5(IQR) = 94 + 1.5(8) = 106
No data value is above 106.
Therefore, the only outliers of the data set are:
D. 20, 30, and 50
2. See explanation on how to we found the Q1 of the given data set as explained earlier in question 1 above.
Thus:
Q1 = (85 + 87)/2 = 86
3. Q3 = (93 + 95)/2 = 94
A^2 + 31 = 155 - I squared each of b and c for those numbers
a^2 = 155 - 31
a^2 = 124
a = 4 * sqrt(31)
Well you are given the roots.
if we have 3 it would.have to be x^3. So something like:
y = ax^3 + bx^2 + cx + d
this could.also be written:
y = (x + a) (x + b) (x + c)
when you are able to write it like this, we know that the opposite of a, b, and c are roots. this is because if we can make any of the insides of the 3 parenthesis equal 0 then y = 0 and that x.is a root. Well if we know the 3 roots that x will be then we just have to figure out the a, b, and c. So let's plug our roots in.
y = (-1 + a) (-5 + b) (-3 + c)
now we have to make each parenthesis equal 0 to find what a, b, and c should be. It is obvious a = 1 to make.that one zero and b = 5 and c = 3. So we know a, b, and c. now let's plug.those into our first equation.
y = (x + 1) (x + 5) (x + 3)
this is your equation. You can multiply out if necessary
If you meant "1/5 radian," then the angle in degrees is
1 180 degrees
---- * ------------------ = 36 degrees
5 1 rad