12%= 0.12 = 12/100 = 108/900
1/10 = 90/900
2/9 = 200/900
108/900 + 90/900 + 200/900 = 398/900 used
900- 398 = 502
502/900 = 251/ 450
251/450 × 450 = 251
Karen has $251 for food
Answer:
Actually it's not polygon. it's a nonagon. With r=8.65mm″, the law of cosines gives us side a:
a=√{b²+c²−2bc×cos40°}
a=√{149.645−149.645cos40°}
Area Nonagon = (9/4)a²cos40°
=9/4[149.645−149.645cos40°]cot20°
=336.70125[1−cos(40°)]cot(20°)
Applying an identity for the cos(40°) does not get us very far…
= 336.70125[1−(cos2(20°)−1)]cot(20°)
= 336.70125[2−cos2(20°)]cot(20°)
= 336.70125[2−(1−sin2(20°))]cot(20°)
= 336.70125[1+sin2(20°)]cos(20°)sin(20°)
= 336.70125[cot(20°)+sin(20°)cos(20°)]mm²
Answer:
6(2 + 2/3x) = 12 + 4x
Step-by-step explanation:
...............
<h3>Given</h3>
A(-3, 1), B(4, 5)
<h3>Find</h3>
coordinates of P on AB such that AP/PB = 5/2
<h3>Solution</h3>
AP/PB = 5/2 . . . . . desired result
2AP = 5PB . . . . . . multiply by 2PB
2(P-A) = 5(B-P) . . . meaning of the above
2P -2A = 5B -5P . . eliminate parentheses
7P = 2A +5B . . . . . collect P terms
P = (2A +5B)/7 . . . .divide by the coefficient of P
P = (2(-3, 1) +5(4, 5))/7 . . . . substitute the given points
P = (-6+20, 2+25)/7 . . . . . . simplify
P = (2, 3 6/7)