1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolbaska11 [484]
4 years ago
14

7.05, 5.07,7.5,0.57 least to greatest

Mathematics
1 answer:
denis-greek [22]4 years ago
4 0

Answer:

0.57, 5.07, 7.5, 7.05 I believe that this is correct if not plz correct me

You might be interested in
A manufacturer of shipping boxes has a box shaped like a cube. The side length is (5a + 4b). What is the volume of the box in te
Flura [38]

The volume of the cube would be S^3, where S is the length of the side.


Volume = (5a + 4b)^3

Which becomes:

(5a+4b)(5a+4b)(5a+4b)  

Multiply the first two sets of parenthesis by each other:

(25a^2+40ab+16b^2)(5a+4b)  

Now multiply that by the 3rd set of parenthesis to get:

125a^3+300a^2b + 240ab^2 + b^3

5 0
3 years ago
1.5x+0.75y what does x variable
Illusion [34]

Answer:

1.5

Step-by-step explanation:


3 0
3 years ago
Factor out the GCF from the following polynomials.
Ber [7]

Answer:

Step-by-step explanation:

i hope

the the answer is 2ab3(a4+3b3−7ab)

hope it helps.

sorry if it wrong

-Delilah

5 0
3 years ago
For each, list three elements and then show it is a vector space.
Butoxors [25]

Answer:

(a) Three polynomials of degree 1 with real coefficients belong to the set P_1=\{a_0+a_1x\ | a_0, a_1 \in \mathbb{R} \}, then:

2+3x \in P_1

4.5+\sqrt2 x \in P_1

\log5+78x \in P_1

(b) Three polynomials of degree 1 with real coefficients that hold the relation a_0 - 2a_1 = 0 belong to the set P_2=\{a_0+a_1x\ | a_0-2 a_1 =0 \}. The relation between the coefficients is equivalent to a_1 = \frac{a_0}{2}, then:

4+2x \in P_2

13+6.5x \in P_2

10.5+5.25x \in P_2

Step-by-step explanation:

(a) Three polynomials of degree 1 with real coefficients belong to the set P_1=\{a_0+a_1x\ | a_0, a_1 \in \mathbb{R} \}, then:

  • 2+3x \in P_1
  • 4.5+\sqrt2 x \in P_1
  • \log5+78x \in P_1

A vector space is any set whose elements hold the following axioms for any \vec{u}, \vec{v} and \vec{w} and for any scalar a and b:

  1. (\vec{u} + \vec{v} )+\vec{w} = \vec{u} +( \vec{v} +\vec{w})
  2. There is the <em>zero element </em>such that: \vec{0} + \vec{u} = \vec{u} + \vec{0}
  3. For all element \vec{u}of the set, there is an element -\vec{u} such that: -\vec{u} + \vec{u} = \vec{u} + (-\vec{u}) = \vec{0}
  4. \vec{u} + \vec{v} = \vec{v} + \vec{u}
  5. a(b\vec{v}) = (ab)\vec{v}
  6. 1\vec{u} = \vec{u}
  7. a(\vec{u} + \vec{v} ) = a\vec{u} + a\vec{v}
  8. (a+b)\vec{v} = a\vec{v}+b\vec{v}

Let's proof each of them for the first set. For the proof, I will define the polynomials a_0+a_1x, b_0+b_1x and c_0+c_1x and the scalar h and g.

  1. (a_0+a_1x + b_0+b_1x)+c_0+c_1x = a_0+a_1x +( b_0+b_1x+c_0+c_1x)\\(a_0+b_0+c_0) + (a_1+b_1+c_1)x = (a_0+b_0+c_0) + (a_1+b_1+c_1)x and defining a_0+b_0+c_0 = \alpha_0 and a_1+b_1+c_1 = \alpha_1, we obtain \boxed{\alpha_0+\alpha_1x= \alpha_0+\alpha_1x} which is another polynomial that belongs to P_1
  2. A null polynomial is define as the one with all it coefficient being 0, therefore: \boxed{0 + a_0+a_1x = a_0+a_1x + 0 = a_0+a_1x}
  3. Defining the inverse element in the addition as -a_0-a_1x, then -a_0-a_1x + a_0 + a_1x = a_0+a_1x + (-a_0-a_1x)\\\boxed{(-a_0+a_0)+(-a_1+a_1)x = (a_0-a_0)+(a_1-a_1)x = 0}
  4. (a_0+a_1x) +( b_0+b_1x) =( b_0+b_1x) +( a_0+a_1x)\\(a_0+b_0)+(a_1+b_1)x = (b_0+a_0)+(b_1+a_1)x\\\boxed{(a_0+b_0)+(a_1+b_1)x = (a_0+b_0)+(a_1+b_1)x}
  5. a[b(a_0+a_1x)] = ab (a_0+a_1x)\\a[ba_0+ba_1x] = aba_0+aba_1x\\\boxed{aba_0+aba_1x = aba_0+aba_1x}
  6. \boxed{1 \cdot (a_0+a_1x) = a_0+a_1x}
  7. \boxed{a[(a_0+a_1x)+(b_0+b_1x)] = a(a_0+a_1x) + a(b_0+b_1x)}
  8. (a+b)(a_0+a_1x)=aa_0+aa_1x+ba_0+ab_1x\\\boxed{(a+b)(a_0+a_1x)= a(a_0+a_1x) + b (a_0+a_1x)}

With this, we proof the set P_1 is a vector space with the usual polynomial addition and scalar multiplication operations.

(b) Three polynomials of degree 1 with real coefficients that hold the relation a_0 - 2a_1 = 0 belong to the set P_2=\{a_0+a_1x\ | a_0-2 a_1 =0 \}. The relation between the coefficients is equivalent to a_1 = \frac{a_0}{2}, then:

  • 4+2x \in P_2
  • 13+6.5x \in P_2
  • 10.5+5.25x \in P_2

Let's proof each of axioms for this set. For the proof, I will define again the polynomials a_0+a_1x, b_0+b_1x and c_0+c_1x and the scalar h and g. Again the relation a_1 = \frac{a_0}{2} between the coefficients holds

  1. [(a_0+a_1x) +( b_0+b_1x)]+(c_0+c_1x) = (a_0+a_1x) +[( b_0+b_1x)+(c_0+c_1x)]\\(a_0+b_0+c_0) + (a_1+b_1+c_1)x = (a_0+b_0+c_0) + (a_1+b_1+c_1)x and considering the coefficient relation and defining a_0+b_0+c_0 = \alpha_0 and a_1+b_1+c_1 = \alpha_1, we have (a_0+b_0+c_0) + (a_1+b_1+c_1)x = (a_0+b_0+c_0) + (a_1+b_1+c_1)x\\(a_0+b_0+c_0) + \frac{1}{2} (a_0+b_0+c_0)x = (a_0+b_0+c_0) + \frac{1}{2} (a_0+b_0+c_0)x\\\boxed{\alpha_0 + \alpha1x = \alpha_0 + \alpha1x} which is another element of the set since it is a degree one polynomial whose coefficient follow the given relation.

The proof of the other axioms can be done using the same logic as in (a) and checking that the relation between the coefficients is always the same.

6 0
4 years ago
Solve by factoring: 2x2 - 5x - 12 = 0
Zepler [3.9K]

Step-by-step explanation:

2 {x}^{2}  - 5x - 12

2 {x}^{2}   - 8x  + 3x - 12

2x(x - 4) + 3(x - 4)

2x  + 3 = 0 \:  \: x - 4 = 0

x =  \frac{ - 3}{2}  \:  \: x =4

5 0
3 years ago
Read 2 more answers
Other questions:
  • TOI
    9·1 answer
  • A superhero recently asked his nemesis how many cats she has. She answered with a​ riddle: ​"Seven dash eighths of my cats plus
    11·1 answer
  • Can a function be both even and odd? use algebra to find the answer.
    8·1 answer
  • How do I solve this equation <br> A=2x+6xz
    5·1 answer
  • Suppose that a company prints baseball cards. They claim that 30% of the cards feature rookies, 60% feature veterans, and 10% fe
    5·1 answer
  • 3/9 can also simplify to.....<br><br> 3<br><br> 2/6<br><br> 1/3
    9·2 answers
  • Which of these expressions are equivalent to −5+(2.5+315)⋅4.25 ? Choose the TWO correct answers.
    15·1 answer
  • Help!!<br> will mark brainliest
    13·2 answers
  • Need help with another question please
    13·1 answer
  • 4(kr - 8)+5k^2<br><br><br>r=6<br><br>k=9<br><br>show work
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!