Answer:
2 m = E / c^2 where m is mass of electron
E = h v where v is the frequency ( nu) of the incident photon
E = h c / y where y is the incident wavelength (lambda)
2 m = h / (c y)
y = h / (2 m c) wavelength required
y = 6.62 * 10E-34 / (2 * 9.1 * 10E-31 * 3 * 10E8) m
y = 3.31 / 27.3 E-11 m
y = 1.21 E -12 m = .0121 Angstrom units
The time after being ejected is the boulder moving at a speed 20.7 m/s upward is 2.0204 s.
<h3>What is the time after being ejected is the boulder moving at a speed 20.7 m/s upward?</h3>
The motion of the boulder is a uniformly accelerated motion, with constant acceleration
a = g = -9.8 
downward (acceleration due to gravity).
By using Suvat equation:
v = u + at
where: v is the velocity at time t
u = 40.0 m/s is the initial velocity
a = g = -9.8
is the acceleration
To find the time t at which the velocity is v = 20.7 m/s
Therefore,

The time after being ejected is the boulder moving at a speed 20.7 m/s upward is 2.0204 s.
The complete question is:
A large boulder is ejected vertically upward from a volcano with an initial speed of 40.0 m/s. Ignore air resistance. At what time after being ejected is the boulder moving at 20.7 m/s upward?
To learn more about uniformly accelerated motion refer to:
brainly.com/question/14669575
#SPJ4
Answer:

Explanation:
Given that,
A radio wave transmits 38.5 W/m² of power per unit area.
A flat surface of area A is perpendicular to the direction of propagation of the wave.
We need to find the radiation pressure on it. It is given by the formula as follows :

Where
c is speed of light
Putting all the values, we get :

So, the radiation pressure is
.
Answer:B
Explanation:
Magnetic field lines form close loops and never intercept
That is False they are actually located in your stomach area