Answer: In particular, electron degeneracy pressure is what supports white dwarfs against gravitational collapse, and the Chandrasekhar limit (the maximum mass a white dwarf can attain) arises naturally due to the physics of electron degeneracy.
Explanation:
Answer:
Capacitive reactance of the capacitor is 68 ohms
Explanation:
It is given that,
Capacitance, 
Frequency, 
Capacitive reactance is given by :



or

So, the capacitive reactance of the capacitor is 68 ohms. Hence, this is the required solution.
Answer:
Nothing
Explanation:
The radius of the orbit of the Earth does not depend on the radius of the sun.
In fact, the gravitational attraction between the Earth and the Sun provides the centripetal force that keeps the Earth in orbit:

where
G is the gravitational constant
M is the mass of the sun
m is the mass of the Earth
r is the radius of the orbit of the Earth
v is the orbital speed of the earth
Re-arranging the equation for r:

Also,

where
is the angular velocity of the Earth's orbit. So we can rewrite the equation as

As we see, the radius of the orbit of the Earth, r, does not depend on the mass of the Sun, so if the sun shrank in size, the orbit remains the same.
The instant it was dropped, the ball had zero speed.
After falling for 1 second, its speed was 9.8 m/s straight down (gravity).
Its AVERAGE speed for that 1 second was (1/2) (0 + 9.8) = 4.9 m/s.
Falling for 1 second at an average speed of 4.9 m/s, is covered <em>4.9 meters</em>.
ANYTHING you drop does that, if air resistance doesn't hold it back.
Infrared light because it is barely able to be seen