Answer:
Explanation:
Let the radius of track required be r.
Centripetal force will be provided by frictional force which will be equal to
m v²/ r
Frictional force = mg x μ
So
m v² /r = mg μ
r = v² / μ g =
v = 29 km /h = 8.05 m /s
r =( 8.05 x 8.05 ) /( .32 x 9.8 ) = 20.66 m
The acceleration is -9.8m/s^2. The initial velocity is -8m/s. The initial position is 30m. This describes a position function of
-(9.8/2)t^2-8t+30=0
Solve the quadratic equation for t to get t=1.789s
The answer is near the poles.
Answer:
The length of an edge of each small cube is 3.43 nm.
Explanation:
Given that,
Temperature of ideal gas =27.0°C
Pressure = 1.00 atm
We need to calculate the length of an edge of each small cube
Using gas equation



For, N = 1
Where,
N = number of molecule
k = Boltzmann constant
T = temperature
P= pressure
Put the value into the formula


Now, for the cube





Hence, The length of an edge of each small cube is 3.43 nm.
Answer:
The maximum power delivered by the power supply is 0.81 W.
Explanation:
Given that,
Inductance L= 2.0 H
Resistance R = 100 ohm
Voltage = 9.0 V
We need to calculate the power
Using formula of power

Where, P = power
V = voltage
R = resistance
Put the value into the formula


Hence, The maximum power delivered by the power supply is 0.81 W.