Answer:
2835 J
Explanation:
Take the specific heat capacity of water as 4.2 J/ g°C.
Energy (heat) = mass x specific heat capacity x change in temperature
(E= mcΔT)
E = 27 x 4.2 x (45-20)
E = 2835 J
Answer:
pH = 9.48
Explanation:
We have first to realize that NH₃ is a weak base:
NH₃ + H₂O ⇔ NH₄⁺ + OH⁻ Kb = 1.8 x 10⁻⁵
and we are adding this weak base to a solution of NH₄NO₃ which being a salt dissociates 100 % in water.
Effectively what we have here is a buffer of a weak base and its conjugate acid. Therefore, we need the Henderson-Hasselbach formula for weak bases given by:
pOH = pKb + log ( [ conjugate acid ] / [ weak base ]
mol NH₃ = 0.139 L x 0.39 M = 0.054 mol
mol NH₄⁺ = 0.169 L x 0.19 M = 0.032 mol
Now we have all the information required to calculate the pOH ( Note that we dont have to calculate the concentrations since in the formula they are a ratio and the volume will cancel out)
pOH = -log(1.8 x 10⁻⁵) + log ( 0.032/0.054) = 4.52
pOH + pH = 14 ⇒ pH = 14 - 4.52 = 9.48
The solution is basic which agrees with NH₃ being a weak base.
Solid to Gas is Sublimation. Gas to Solid is Deposition.
The correct answer is e. 3.57×10³
Al³+(aq) + 3e→AL(s)
4.00g of AL=4g/26.98 g/mol= 0.1483 mol
t=znF/1 where t is time in seceonds.
Z= valency number of ions of the substance or electrons which are transferred per ion
F= Faraday's constant
I = electric current in'A'CA C/s
t=(3×0.1483 mol ×96485 C/mol) /12(C15)
t=3577 second = 3.5 ×10³s