Answer:
Step-by-step explanation:
the first one cant be a triangle
im pretty sure the second one can
the third one can
im pretty sure the fourth one cant
Answer:
Infinitely Many Solutions
Step-by-step explanation:
Given
![\left[\begin{array}{cccccc}1&2&3&4&5&6\\7&6&5&4&3&2\\8&8&8&8&8&8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccccc%7D1%262%263%264%265%266%5C%5C7%266%265%264%263%262%5C%5C8%268%268%268%268%268%5Cend%7Barray%7D%5Cright%5D)
Required
Determine the type of solution
From the matrix, we have:
3 non-zero rows and 5 variables (the last column is the result)
When the number of variables is more than the number of non-zero rows, then such system has infinitely many solutions
i.e.


X=20
If they're parallel the other number in the same spot as 5x+15 equals that, so 5x+15=115 because if they are parallel they're the same if same spot and same line going through them.
115-15 = 100
5x=100
Divide by 5 both sides
X=20
If x=20 then these lines would be parallel
Answer: There are eight steps and two methods. I will be showing you one of them. If you're wondering, I am in 7th grade. I go to K12 online school.
Step-by-step Explanation: 1. Add together the lengths of the bases. The bases are the 2 sides of the trapezoid that are parallel with one another. If you aren’t given the values for the base lengths, then use a ruler to measure each one. Add the 2 lengths together so you have 1 value.[1]
For example, if you find that the top base (b1) is 8 cm and the bottom base (b2) is 13 cm, the total length of the bases is 21 (8 cm + 13 cm = 21 cm, which reflects the "b = b1 + b2" part of the equation).
2. Measure the height of the trapezoid. The height of the trapezoid is the distance between the parallel bases. Draw a line between the bases, and use a ruler or other measuring device to find the distance. Write the height down so you don’t forget it later in your calculation.[2]
The length of the angled sides, or the legs of the trapezoid, is not the same as the height. The leg length is only the same as the height of the leg is perpendicular to the bases.
3. Multiply the total base length and height together. Take the sum of the base lengths you found (b) and the height (h) and multiply them together. Write the product in the appropriate square units for your problem.[3]
In this example, 21 cm x 7 cm = 147 cm2 which reflects the "(b)h" part of the equation.
4. Multiply the product by ½ to find the area of the trapezoid. You can either multiply the product by ½ or divide the product by 2 to get the final area of the trapezoid since the result will be the same. Make sure you label your final answer in square units.[4]
For this example, 147 cm2 / 2 = 73.5 cm2, which is the area (A).