Answer:
Divide by 2
q^2+4q=3/2
q^2+4q(4/2)^2=3/2+(4/2)^2
(q+4/2)^2=3/2+16/4
taking the square root of both side
√(q+4/2)^2=√(3/2+16/4)
Note that the square will cancel the square root then you will take LCM on the right hand side
q+4/2=√6+16/4
q+4/2=√22/4
q= -4/2+-√22/4
q=(-4+_√22/4)
Answer:
v=6
Step-by-step explanation:
First let's simplify the equation so it will be easier to PEMDAS the equation later.
-7v+4(2-5v)=-154
-7v+8-20v=-154
-27v+8=-154
Now you must isolate the v variable. You do this by subtracting 8 first and then divide by -27.
-27v+8=-154
-27v=-162
v = 6
Answer:
12 x 9 (12 on the top and bottom and 9 on the sides)
Step-by-step explanation:
100 km = 2 units, or 2 boxes
450 x 2/100 = 900/100 = 9
(not sure if this would help or not)
Step-by-step explanation:
$21=per hour mowling
$17=per hour gardening
only work 16 hours per week
Goals =$275 per week
$275÷16 hours=<u>$</u><u>17.1875</u><u>(</u><u>Each</u><u> </u><u>hour</u><u> </u><u>in</u><u> </u><u>a</u><u> </u><u>week</u><u>)</u>
<u>mow</u><u> </u><u>lawns</u><u>=</u><u> </u><u>$</u><u>17.1875</u><u> </u><u>×</u><u>$</u><u>12</u><u>=</u><u>$</u><u>206.25</u><u>(</u><u>for</u><u> </u><u>16</u><u> </u><u>hours</u><u>)</u>
<u>gardening</u><u>=</u><u>$</u><u>17.1875 </u><u>×</u><u>$17=$292.1875</u><u>(</u><u>for</u><u> </u><u>16</u><u> </u><u>hours</u><u>)</u>
<u>m</u><u>o</u><u>w</u><u>l</u><u>i</u><u>n</u><u>g</u><u> </u><u>lawns</u><u>=</u><u>$</u><u>275</u><u>÷</u><u>$</u><u>21</u><u>=</u><u>13.0952380952</u><u>(</u><u>13</u><u> </u><u>hours</u><u>,</u><u>12</u><u> </u><u>minutes</u><u> </u><u>and</u><u> </u><u>30</u><u> </u><u>seconds</u><u>)</u>
<u>Gardening</u><u> </u><u>=</u><u>$</u><u>275</u><u>÷</u><u>$</u><u>17</u><u>=</u><u> </u><u>$</u><u>16.1764705882</u><u> </u><u>(</u><u>970</u><u> </u><u>hours</u><u>,</u><u>9</u><u> </u><u>minutes</u><u>,</u><u>80</u><u> </u><u>seconds</u><u>)</u>
<u>A</u><u> </u><u>little</u><u> </u><u>help</u><u> </u><u>not</u><u> </u><u>fully</u><u> </u><u>answered</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>