The right answer to this question is option D. Carotenoids are categorized into two major divisions: carotenes and beta carotenes
First, let's check option A, it says that the carotenoids include red, orange and yellow pigments, that's true, we can check that on lab for example, a vegetable that can be mentioned here are carrots, it has lots of this and it's very healthy too, and remember, there isn't a single animal that can produce carotenoids, so they need to grab it from nature.
The second option, B. says that sometimes carotenoids are sometimes called as acessory pigments, that's true too, some studies consider them acessory pigments, so, they're not alone there, there are different kinds of pigments that can be on that plant, and they're also very important for the animals. Option C refers to beta carotene as the most abundant carotene in plants, that's true too, we can also find other kinds of carotenoids on plants, but this one as it's seen in lab, is the most common one. The last one, D, isn't true, the two major divisions are: Xanthophylls and Carotenoids, beta carotenoids are a type of carotenoids, not a different group.
Animal rights are important because animals at living creatures just like humans.
Answer:
predators consuming prey transfers the energy that the prey original received from plants which get their energy from the sun
Answer:
Any insect unlucky enough to land on the mouth-like leaves of an Australian pitcher plant will meet a grisly end. The plant's prey is drawn into a vessel-like ‘pitcher’ organ where a specialized cocktail of enzymes digests the victim.
Now, by studying the pitcher plant's genome—and comparing its insect-eating fluids to those of other carnivorous plants—researchers have found that meat-eating plants the world over have hit on the same deadly molecular recipe, even though they are separated by millions of years of evolution.