The units tell you:
g/cm³ = Mass (in grams) per (divided by) Volume (in cm³);
So:
109/24 = 4.54166..... ⇒ 4.54 g/cm³.
Always look at the units.
Just like for speed, you might have m/s so this is:
Distance (in meters) per (divided by) Time (in seconds).
The trophosphere contains the most water vapor!
Answer:
a) the diffusion length = 1000 micrometers;
so if the diffusion co-efficient is also known or given; we can therefore deduce the time taken( i.e how long it would take for a message to reach from one side of the cell to the other).
b) We need to be given the data value concerning the diffusion coefficient of the protein.
c) 1.234 × 10⁷ seconds
Explanation:
a)
In a controlled transportation that occurs in diffusion; the time taken can be expressed as:

Now; if a message is passed through a
ion, From studies; we know that these
ions are infinitesimally smaller in size in the
channels.
Also the information being carried through the
ions are bound to be transported diagonally across the cell.
However; the diffusion length = 1000 micrometers;
so if the diffusion co-efficient is also known or given; we can therefore deduce the time taken( i.e how long it would take for a message to reach from one side of the cell to the other).
b) Since; we don't know the information concerning the diffusion coefficient of the protein, then it is quite not possible to determine how long it would take for a message to be transmitted through the diffusion of a small protein.
c) Here; we are given the value of the diffusion coefficient to be = 0.2 micrometer²/seconds
In a transmembrane protein; the diffusion length is half the circumference of the cell which is = 
= 
= 1570.8 micrometers
Now;the time taken can now be calculated as:



The half-life of a radioactive compound is the time taken for that said isotope to decay or disintegrate so that only half of the initial atoms remain in that compound. During the decay process, the isotope will give off energy and matter, and the way to depict this is indicated by t 1/2.
Answer:
La constante de equilibrio Ka del ácido láctico es 1.38x10⁻⁴.
Explanation:
El ácido láctico es un ácido débil cuya reacción de disociación es la siguiente:
CH₃CHOHCOOH + H₂O ⇄ CH₃CHOHCOO⁻ + H₃O⁺ (1)
0.025M - x x x
La constante de acidez del ácido es:
![Ka = \frac{[CH_{3}CHOHCOOH^{-}][H_{3}O^{+}]}{[CH_{3}CHOHCOOH]}](https://tex.z-dn.net/?f=%20Ka%20%3D%20%5Cfrac%7B%5BCH_%7B3%7DCHOHCOOH%5E%7B-%7D%5D%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BCH_%7B3%7DCHOHCOOH%5D%7D%20)
Sabemos que la concentración del ácido inicial es:
[CH₃CHOHCOOH] = 0.025 M
Y que a partir del pH podemos hallar [H₃O⁺]:
![pH = -log[H_{3}O^{+}]](https://tex.z-dn.net/?f=%20pH%20%3D%20-log%5BH_%7B3%7DO%5E%7B%2B%7D%5D%20)
![[H_{3}O^{+}] = 10^{-pH} = 10^{-2.75} = 1.78 \cdo 10^{-3} M](https://tex.z-dn.net/?f=%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%20%3D%2010%5E%7B-pH%7D%20%3D%2010%5E%7B-2.75%7D%20%3D%201.78%20%5Ccdo%2010%5E%7B-3%7D%20M%20)
Debido a que el ácido se disocia en agua para producir los iones CH₃CHOHCOO⁻ y H₃O⁺ de igual manera (según la reacción (1)), tenemos:
[CH₃CHOHCOO⁻] = [H₃O⁺] = 1.78x10⁻³ M
Y por esa misma disociación, la concentración del ácido en el equilibrio es:
![[CH_{3}CHOHCOOH^{-}] = 0.025 M - 1.78 \cdo 10^{-3} M = 0.023 M](https://tex.z-dn.net/?f=%20%5BCH_%7B3%7DCHOHCOOH%5E%7B-%7D%5D%20%3D%200.025%20M%20-%201.78%20%5Ccdo%2010%5E%7B-3%7D%20M%20%3D%200.023%20M%20)
Entonces, la constante de equilibrio Ka del ácido láctico es:
Espero que te sea de utilidad!