40.0mL(1 L/1000 mL) = 0.040 L
<span>then plug into the formula M = moles/liters </span>
<span>0.035 M = moles/ 0.040L </span>
<span>multipy both sides by 0.040L, and you get 0.0014 moles </span>
<span>so the answer is 1</span>
Answer: increasing the positive charge of the positively charged object and increasing the negative charge of the negatively charged object.
Explanation:
edge
The coefficient of performance (cop) of a refrigerator is defined as the ratio of " the work necessary to heat or cool something usefully."
The usable heating or cooling delivered to work required ratio, also known as the coefficient of performance, or COP, of a heat pump, refrigerator, as well as air conditioning system. Higher efficiency, less energy (power) usage, and thus reduced operational costs are all related to higher COPs.
Coefficient of performance formula:

where, K = Coefficient of performance,
= heat of pumps output,
= work required by the system.
It is refrigeration's coefficient of performance (COP) will always be greater than 1.
Therefore, the coefficient of performance (cop) of a refrigerator is defined as the ratio of " the work necessary to heat or cool something usefully."
To know more about coefficient of performance
brainly.com/question/14058512
#SPJ4
In order to calculate the mass of nitrogen, we must first calculate the mass percentage of nitrogen in potassium nitrate. This is:
% nitrogen = mass of nitrogen / mass of potassium nitrate
% nitrogen = 14 / 101.1 x 100
The mass of nitrogen = % nitrogen x sample mass
= (14 / 101.1) x 101.1
= 14 grams
The molar weight of nitrogen is 14. Each mole of urea contains two moles of nitrogen. Therefore, for there to be 14 grams of nitrogen, there must be 0.5 moles of urea.
Mass of urea = moles urea x molecular weight urea
Mass of urea = 0.5 x 66.06
Mass of urea = 33.03 grams
Answer:
pH = -log₁₀ [H⁺]
Explanation:
pH is a value in chemistry used in to measure solution trying to determine each quality, purity, risks for health of some products, etc.
As you write in the question, [H⁺] = 10^(-pH)
Using logarithm law (log (m^(p) = p log(m):
log₁₀ [H⁺] = -pH
And
<h3>pH = -log₁₀ [H⁺]</h3>