Answer:
2.5 m/s
Explanation:
Mechanical energy is the sum of the potential and kinetic energy.
E = PE + KE
E = mgh + ½mv²
172.1 J = (7.26 kg) (9.8 m/s²) (2.1 m) + ½ (7.26 kg) v²
v = 2.5 m/s
Answer:
3540.5N
Explanation:
Step one:
given data
mass m= 0.196kg
speed v= 31m/s
distance r= 5.32cm = 0.0532m
Step two
The expression relating force, mass, velocity and distance is
F= mv^2/r
substitute we have
F=0.196*31^2/0.0532
F=0.196*961/0.0532
F=188.356/0.0532
F=3540.5N
Answer:
Potential gravitational energy is the energy that the body has due to the Earth's gravitational attraction. In this way, the potential gravitational energy depends on the position of the body in relation to a reference level.
Explanation:
Answer: a) 7.71 m/s², b) - 6.67 m/s²
Explanation: first thing to note is that
1 mile = 1609.34
1 hour = 3600s
Hence, 100mph to m/s = (100 × 1609.34)/3600 = 44.71 m/s
Initial velocity (u) = 0, final velocity (v) = 44.71 m/s, t = 5.8s, a = acceleration =?
By using newton's laws of motion
v = u + at
44.71 = 0 + a(5.8)
44.71 = 5.8a
a = 44.71/5.8
a = 7.71 m/s²
Question b)
The car is completing a stop which implies that the car is coming to rest, and when a car is coming to rest, the final velocity (v) is zero.
Hence u = 34 m/s, v = 0, a =?, t = 5.1 s
v = u + at
0 = 34 + a(5.1)
a(5.1) = - 34
a = - 34/5.1
a = - 6.67 m/s².
The negative sign beside the acceleration shows that the body is decelerating