Somersaulting- for longer distances.It bends the narrow end in the direction it wants to go & takes grip with tentacles. It releases the broad end and straightens up. like this it continues. looping- for shorter distances.
Hope this helps
Since both heat and work can be measured and quantified, this is the same as saying that any change in the energy of a system must result in a corresponding change in the energy of the surroundings outside the system. In other words, energy cannot be created or destroyed.
The question is incomplete. The mass of the object is 10 gram and travelling at a speed of 2 m/s.
Solution:
It is given that mass of object before explosion is,m = 10 g
Speed of object before explosion, v = 2 m/s
Let
be the masses of the three fragments.
Let
be the velocities of the three fragments.
Therefore, according to the law of conservation of momentum,


So the x- component of the velocity of the m2 fragment after the explosion is,

∴ 
Answer:
F=m(11.8m/s²)
For example, if m=10,000kg, F=118,000N.
Explanation:
There are only two vertical forces acting on the rocket: the force applied from its thrusters F, and its weight mg. So, we can write the equation of motion of the rocket as:

Solving for the force F, we obtain that:

Since we know the values for a (2m/s²) and g (9.8m/s²), we have that:

From this relationship, we can calculate some possible values for F and m. For example, if m=10,000kg, we can obtain F:

In this case, the force from the rocket's thrusters is equal to 118,000N.
Answer:
200 N = 200 Newtons
Explanation:
Just use the formula F = m*a
F = Force in Newtons
m = mass and is 20 kg
a = acceleration and is 10 m/s^2
F = 20 * 10
F = 200 Newtons.