Answer:
I would love to help, Could you put the question in English?
Explanation:
There are two general types of collisions, inelastic and elastic.
Inelastic collisions occur when two objects collide but neither of them bounce away from each other.
Collisions in which the objects do not touch each other are elastic. (Ex: Rutherford Scattering)
Answer:
D. Sound Energy, Magnetic energy
Explanation:
Sound energy is in motion, and Magnetic energy is about to be in motion.
Answer:
-4*10⁴ units.
Explanation:
As the metal rod was initially neutral (which means that it has the same quantity of positive and negative charges), after being close to the charged sphere, as charge must be conserved, the total charge of the metal rod must still remain to be zero.
So, if due to the influence of the negative charge in the sphere, the half of the road closer to the sphere has a surplus charge of +4*10⁴ units, the charge on the half of the rod farther from the sphere must be the same in magnitude but of the opposite sign, i.e., -4*10⁴ units.
Answer:
a) 
b) 
Explanation:
From the question we are told that:
Density 
Velocity of wind 
Dimension of rectangle:50 cm wide and 90 cm
Drag coefficient 
a)
Generally the equation for Force is mathematically given by



Therefore Torque



b)
Generally the equation for torque due to weight is mathematically given by

Where

Therefore



