Answer:
The resulting magnetic force on the wire is -1.2kN
Explanation:
The magnetic force on a current carrying wire of length 'L' with current 'I' in a magnetic field B is
F = I (L*B)
Finding (L * B) , where L = (2, 0, 0)m , B = (30, -40, 0)
L x B =
= (0, 0, -80)
we can now solve
F = I (L x B) = I (-80)
F = -1200 kmN
F = -1200 kN * 10⁻³
F = -1.2kN
Answer:
I'm pretty sure this is not a complete question. My guess is that you are trying to add/subtract vectors. Vectors have both magnitude and direction, so vector A is pretty clear, but a magnitude of 13 (i'm guessing a resultant) without a direction is weird.
IF 13 is the magnitude of the resultant, vector B added to vector A could have any magnitude 17 ≤ B ≤ 43
It could have any direction of
θ = (225 - 180) ± arcsin(13/30)
θ = 45 ± 25.679...
70.679 ≤ θ ≤ 19.321
components of vector B would be
Bx = |B|cosθ
By = |B|sinθ
Answer:
A wet body has a relatively high concentration of water. When this is transferred to a towel, the large surface area of the towel fabric distributes the water molecules over a much greater surface area, so the relative concentration is lower.
Answer:
The fuse must be connected between the device and the power intake source.
Explanation:
A fuse is a protective component of electrical appliances that is designed to be sensitive to a particular range of electric current
The fuse is made of a thing metal strip with a known melting point. Once current abive its carrying capacity flows through it, large heat is generated in the metal strip which melts it and causes the metal strip to cut int two protecting the device from the power spike.