Answer:
kftisgkstisirstizurzursrus
Complete question:
A 45-mH ideal inductor is connected in series with a 60-Ω resistor through an ideal 15-V DC power supply and an open switch. If the switch is closed at time t = 0 s, what is the current 7.0 ms later?
Answer:
The current in the circuit 7 ms later is 0.2499 A
Explanation:
Given;
Ideal inductor, L = 45-mH
Resistor, R = 60-Ω
Ideal voltage supply, V = 15-V
Initial current at t = 0 seconds:
I₀ = V/R
I₀ = 15/60 = 0.25 A
Time constant, is given as:
T = L/R
T = (45 x 10⁻³) / (60)
T = 7.5 x 10⁻⁴ s
Change in current with respect to time, is given as;

Current in the circuit after 7 ms later:
t = 7 ms = 7 x 10⁻³ s

Therefore, the current in the circuit 7 ms later is 0.2499 A
The acceleration is -9.8m/s^2. The initial velocity is -8m/s. The initial position is 30m. This describes a position function of
-(9.8/2)t^2-8t+30=0
Solve the quadratic equation for t to get t=1.789s
Answer:
A. They have the same atomic numbers.
Explanation:
Elements are defined based on the atomic number, which is the number of protons in the nucleus: this means that atoms of the same element have always the same number of protons in their nuclei (and so, always the same atomic number).
The other choices are wrong because:
B. They have the same average atomic masses. --> this is false for isotopes, which are atoms of the same element having a different number of neutrons. Since the atomic mass is calculated from the sum of the masses of protons and neutrons in the nucleus, two isotopes of the same element have different atomic mass
C. They have the same number of electron shells. --> this can be false when an atom of an element loses/gains an electron, becoming an ion: in that case, the number of electron shells can change, since the number of electrons has changed.
D. They have the same number of electrons in their outermost shells. --> this is also false in case one of the atoms is an ion, since the number of electrons is different.