Answer:
Visible Light
wavelength = 4000 - 7000 Angstroms = 400 - 700 milli-microns
1 A unit = 10^-10 m
1 mμ = 10^-9 m
Answer:
a) v = 19,149.6 m/s
b) f = 95%
c) t = 346.5min
Explanation:
First put all values in metric units:

The equation of motion you need is:
where
is the final velocity, a is acceleration and t is time in hours.
Since the spaceship starts from 0 velocity:

Next, you need to calculate the distances traveled on each interval, considering that both starting and final intervals travel the same distance because the acceleration and time are equal. For this part you need the next motion equation:

solving for first and last interval:
Since the spaceship starts and finish with 0 velocity:

Then the ship traveled
at constant speed, which means that it traveled:

Which in percentage is 95% of the trip.
to calculate total time you need to calculate the time used during constant speed:

That added to the other interval times:

Answer:
Option D 3.9
Explanation:
First, you need to use the correct equation which is the following:
COP = Q/W
Where:
Q = heat absorbed
W = work done by the pump
COP = coefficient of perfomance
We have all the data, so, all you need to do is replace in the above expression and you shoould get the correct result:
COP = 30 / 7.7
COP = 3.896
This result you can round it to 3.9. option D.
Answer:
Explanation:
If the volume of a sample of gas is reduced at constant temperature, the average velocity of the molecules increases, the average force of an individual collision increases, and the average number of collisions with the wall, per unit area, per second increases.
As volume is reduced, the gas molecules come closer together, which increases the number of collisions between them and their collisions with the container walls. Also, since the distance traveled by each molecule between successive collision decreases, the molecule velocity doesn't decrease much within collisions as a result of which, the average velocity is higher compared to when the gas is stored in a larger volume. Finally, due to constant collisions, the direction of molecule travel changes rapidly owing to which the acceleration of molecules increases.