Answer:
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.
6
2
−
5
−
4
=
0
6x^{2}-5x-4=0
6x2−5x−4=0
=
6
a={\color{#c92786}{6}}
a=6
=
−
5
b={\color{#e8710a}{-5}}
b=−5
=
−
4
c={\color{#129eaf}{-4}}
c=−4
=
−
(
−
5
)
±
(
−
5
)
2
−
4
⋅
6
(
−
4
)
√
2
⋅
6
Step-by-step explanation:
Answer:
y= 2x+5
Step-by-step explanation:
The equation of a line is usually written in the form of y=mx+c, where m is the gradient and c is the y-intercept.
Parallel lines have the same gradient. Hence m=2.
Subst. m=2 into the equation:
y=2x +c
Now substitute a coordinate.
When x= -2, y=1,
1= 2(-2) +c
1= -4 +c
c= 1 +4
c=5
Thus, the equation of the line is y= 2x +5.
Answer:
Option a is the correct answer
Step-by-step explanation:
![\huge( \sqrt[x]{2})^{ - 1} = {2}^{ - \frac{1}{x} }](https://tex.z-dn.net/?f=%20%5Chuge%28%20%5Csqrt%5Bx%5D%7B2%7D%29%5E%7B%20-%201%7D%20%20%3D%20%20%7B2%7D%5E%7B%20%20-%20%20%5Cfrac%7B1%7D%7Bx%7D%20%7D%20)
Table B and Graph B is the correct answer
Answer:
v = 120
Step-by-step explanation:
If v is inversely proportional to square root of d, then we can write
= k
If v = 30 and d = 400, then
30(
) = k
k = 30(20) = 600
Now
= 600
If d = 25, then v
= 600
5v = 600
v = 120