Answer:

Find the midsegment of the triangle which is parallel to CA.

Tip
- A midsegment of a triangle is a segment connecting the midpoints of two sides of a triangle.
- This segment has two special properties. It is always parallel to the third side, and the length of the midsegment is half the length of the third side.
- If two segments are congruent, then they have the same length or measure.In other words, congruent sides of a triangle have the same length.

We have to find the segment which is parallel to CA.
From the given data,
The segment EG is the midsegment of the triangle
ABC.
So we have,
A midsegment of a triangle is a segment connecting the midpoints of two sides of a triangle. This segment has two special properties. It is always parallel to the third side.

~
I'm attaching the solution.. feel free to ask if you have questions.. I basically did long division. Hope this helps.
Umm no you need to do your own work and do not be asking for answers
Nothing is handed to you ....you need to work HARD to get what you want.
Answer:.
Step-by-step explanation:.
Answer:
P(x ≤ 5 ) = 0.9707
P ( x ≥ 6) = 0.0293
Step-by-step explanation:
The probability of a binomial mass distribution can be expressed with the formula:


where;
n = 8 and π = 0.36
For x = 5
The probability 





to 4 decimal places
b. x ≤ 5
The probability of P ( x ≤ 5)


P(x ≤ 5 ) = 0.0281+0.1267+0.2494+0.2805+0.1972+0.0888
P(x ≤ 5 ) = 0.9707
c. x ≥ 6
The probability of P ( x ≥ 6) = 1 - P( x ≤ 5 )
P ( x ≥ 6) = 1 - 0.9707
P ( x ≥ 6) = 0.0293