The length of a median is equal to half the square root of the difference of twice the sum of the squares of the two sides of the triangle that include the vertex the mediam is drawn from and the square of the side of the triangle the median is drawn to.
triangle sides by a, b, c.
ma=122c2+2b2−a2
mb=122c2+2a2−b2
mc=122a2+2b2−c2
Answer:
shapes
Step-by-step explanation:
The patterns are shapes
Answer:
1. 208 in^2
Step-by-step explanation:
1. We can break the shape up into a rectangle in the middle and 2 triangles on either side of said rectangle.
The dimensions of the rectangle are 8 in by 20 in, and we only know one leg of the triangle as well as the hypotenuse.
If we know one leg and the hypotenuse we can use the pythagorean theormed to sovle for the other side and get 6 in.
So we have
(8 * 20) + 2((1/2)(6)(8))
160 + 48
208 in^2

<h2><em><u>Hello</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>sorry</u></em><em><u> </u></em><em><u>but</u></em><em><u> </u></em><em><u>it</u></em><em><u>'</u></em><em><u>s</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>Gatheted</u></em><em><u> </u></em><em><u>Question</u></em><em><u> </u></em><em><u>Can</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>fix</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>Can</u></em><em><u> </u></em><em><u>you</u></em><em><u>?</u></em><em><u> </u></em></h2>
<em><u>Sorry</u></em><em><u> </u></em><em><u>for</u></em><em><u> </u></em><em><u>answering</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>nonsense</u></em><em><u> </u></em>
<u>#BrainliestBunch</u>
1. C. Concave pentagon
2. A. 1620°
b/c (11 - 2) × 180 = 1620
3. B. 165°
b/c (24 - 2) × 180 ÷ 24 = 165
4. A. 160°
b/c (18 - 2) × 180 ÷ 18 = 160