Answer:

Step-by-step explanation:
Ok, so we start by setting the integral up. The integral we need to solve is:

so according to the instructions of the problem, we need to start by using some substitution. The substitution will be done as follows:
U=5+x
du=dx
x=U-5
so when substituting the integral will look like this:

now we can go ahead and integrate by parts, remember the integration by parts formula looks like this:

so we must define p, q, p' and q':
p=ln U


q'=U-5
and now we plug these into the formula:

Which simplifies to:

Which solves to:

so we can substitute U back, so we get:

and now we can simplify:



notice how all the constants were combined into one big constant C.
Answer:
Number 4, the last one
Step-by-step explanation:
Answer: 14
Explanation:
90 + 76= 166
180 - 166= 14
Answer:
n=601
Step-by-step explanation:
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".
The margin of error is the range of values below and above the sample statistic in a confidence interval.
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The population proportion have the following distribution
In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 95% of confidence, our significance level would be given by
and
. And the critical value would be given by:
The confidence interval for the mean is given by the following formula:
The margin of error for the proportion interval is given by this formula:
(a)
And on this case we have that
and we are interested in order to find the value of n, if we solve n from equation (a) we got:
(b)
Since we don't have a prior estimation for the proportion we can use 0.5 as estimation. And replacing into equation (b) the values from part a we got:
And rounded up we have that n=601