Use a protracter :) hope this helps!
Option 2.
1. Simplify 7 + (12 - 9) + 7 × 3(8 - 5)
According to the Order of Operations, contents of parentheses are evaluated first. This gives
... 7 + 3 + 7 × 3 × 3
Then multiplication and division are performed left to right.
... = 7 + 3 + 21 × 3
... = 7 + 3 + 63
Followed by addition and subtraction left to right.
... = 10 + 63
... = 73
A Google search box can be relied upon to do the operations in the correct order.
_____
2. When the expression is rewritten, a different result is obtained. This is because the operations indicated by the second set of parentheses are altered.
... (7 + 12) - 9 + (7 × 3)8 - 5
... = 19 - 9 + 21 × 8 - 5
... = 19 - 9 + 168 - 5
... = 10 + 168 - 5
... = 178 - 5
... = 173
In the first expression, both +8 and -5 are multiplied by 21. In the rewritten expression, only +8 is multiplied by 21.
We have been given a graph of function g(x) which is a transformation of the function 
Now we have to find the equation of g(x)
Usually transformation involves shifting or stretching so we can use the graph to identify the transformation.
First you should check the graph of 
You will notice that it is always above x-axis (equation is x=0). Because x-axis acts as horizontal asymptote.
Now the given graph has asymptote at x=-2
which is just 2 unit down from the original asymptote x=0
so that means we need shift f(x), 2 unit down hence we get:

but that will disturb the y-intercept (0,1)
if we multiply
by 3 again then the y-intercept will remain (0,1)
Hence final equation for g(x) will be:
