ANY n-sided polygon has interior angles that sum to 180(n - 2) degrees. For an octagon this is 180 x 6 ie 1080 degrees (so the individual interior angles of a regular octagon are 135 degrees).
<span />
Answer:
1. -12x - 9y - 6
2. -12x + 36
3. -240
4. -2
5. x = -57
6. x = -6
7. x = 48
8. x = 20
9. x = -288
10. n = 8
Step-by-step explanation:
1.
-5x - 13 + 3y - 7x - 12y + 7
-12x - 13 + 3y - 12y + 7
-12x - 6 + 3y - 12y
-12x - 6 - 9y
-12x - 9y - 6
2.
-3(4x - 12)
-3(4x) + (-3)(-12)
-12x + 36
3.
6x - 282
6(7) - 282
42 - 282
-240
4.
6x + 2(y + x)
6(-2) + 2(7 + (-2))
-12 + 2(7 - 2)
-12 + 2(5)
-12 + 10
-2
5.
x - 23 = -80
+ 23 +23
x = -57
6.
12x = -72
/12 /12
x = -6
7.
x/4 = 12
* 4 * 4
x = 48
8.
3x + 12 = 72
- 12 - 12
3x = 60
/3 /3
x = 20
9.
x/4 - 8 = -80
+ 8 + 8
x/4 = -72
* 4 * 4
x = -288
10.
-4(1 - 5n) - 8n = 92
-4 + (-4)(-5n) - 8n = 92
-4 + 20n - 8n = 92
-4 + 12n = 92
12n - 4 = 92
+ 4 + 4
12n = 96
/12 /12
n = 8
The answer is C. Greenwich,England.
Answer:
This is a geometric sequence because any term divided by the previous term is a constant called the common ratio. r=36/18=18/9=2 A geometric sequence is expressed as
\begin{gathered}a_n=ar^{n-1},\text{ where a=initial term, r=common ratio, n=term number}\\ \\ a_n=9(2^{n-1})\\ \\ a_6=9(2^5)\\ \\ a_6=288\end{gathered}an=arn−1, where a=initial term, r=common ratio, n=term numberan=9(2n−1)a6=9(25)a6=288
76,000 because it is the outlier