Answer:
<h2><em>
2(3s-14)</em></h2>
Step-by-step explanation:
Given the angles ∠ABF=8s-6, ∠ABE = 2(s + 11), we are to find the angle ∠EBF. The following expression is true for the three angles;
∠ABF = ∠ABE + ∠EBF
Substituting the given angles into the equation to get the unknown;
8s-6 = 2(s + 11)+ ∠EBF
open the parenthesis
8s-6 = 2s + 22+ ∠EBF
∠EBF = 8s-6-2s-22
collect the like terms
∠EBF = 8s-2s-22-6
∠EBF = 6s-28
factor out the common multiple
∠EBF = 2(3s-14)
<em></em>
<em>Hence the measure of angle ∠EBF is 2(3s-14)</em>
Answer:
Step-by-step explanation:
10+20+40=70
70*0.8=7*10*0.8=56 L (We Deliver)
total area =2*(10+20)*40+2*10*20=2*30*40+400=2400+400=2800 cm^2
2800*0.02=28*100*0.02=28*2=56 L (Go Parcels)
Answer:
As many shades 75% will allow. 3/4 6/8, etc
Step-by-step explanation:
Answer:
(-138) is the answer.
Step-by-step explanation:
Perfect square numbers between 15 and 25 inclusive are 16 and 25.
Sum of perfect square numbers 16 and 25 = 16 + 25 = 41
Sum of the remaining numbers between 15 and 25 inclusive means sum of the numbers from 17 to 24 plus 15.
Since sum of an arithmetic progression is defined by the expression
![S_{n}=\frac{n}{2}[2a+(n-1)d]](https://tex.z-dn.net/?f=S_%7Bn%7D%3D%5Cfrac%7Bn%7D%7B2%7D%5B2a%2B%28n-1%29d%5D)
Where n = number of terms
a = first term of the sequence
d = common difference
![S_{8}=\frac{8}{2} [2\times 17+(8-1)\times 1]](https://tex.z-dn.net/?f=S_%7B8%7D%3D%5Cfrac%7B8%7D%7B2%7D%20%5B2%5Ctimes%2017%2B%288-1%29%5Ctimes%201%5D)
= 4(34 + 7)
= 164
Sum of 15 +
= 15 + 164 = 179
Now the difference between 41 and sum of perfect squares between 15 and 25 inclusive = 
= -138
Therefore, answer is (-138).
16 because 36 divided by 9 is 4 so you have to multiply the 4 x 4