Say that f(x)=y and we are taking x=2
x^2 - 12x + 36 is a perfect square trinomial and can be written as (x-6)(x-6).
(x - 6)^2 = 44.
Take the square root of both sides to get...
x - 6 = ±√44 (Always make the square root + or - when you square root)
Add 6 to both sides...
x = √44 + 6
x = -√44 + 6
These are the 2 values of x.
You can also write it to be -0.633 and 12.633. (Once you round.)
Answer:
1/3
Step-by-step explanation:
1/2 of 2/3 = 1/2·2/3 = (1·2)/(2·3) = 1/3
Answer:
f(3π/4) = -π
A = π
b = 2
Step-by-step explanation:
Given that the function follows the form: f(x) = A sin(bx), then f(0) = 0. Given that the period is π, then at x = π/4 the function reaches a maimum, at x = π/2, f(x) = 0, and at x = 3π/4, f(x) reaches a minimum, which have to be π*(-1) = -π
Given the general equation: f(x) = A sin(bx), its period is calculated as:
period = 2π/b
which is equal to π, then:
2π/b = π
b = 2
Replacing x = π/4 into the equation of the function, we get:
A sin(2(π/4)) = π
A sin(π/2) = π
A = π
Answer:
Hamish's earning = $20
Harry's earning = $26
Step-by-step explanation:
Given the following :
Let Harry's earning per hour = x
Let Hamish earning per hour = y
Harry earns a dollar more than more than 5/4 the amount hamish earns per hour;
Therefore,
x = 5/4y + 1
x - 5/4y = 1 - - - - (1)
the amount Harry earns per hour is $2 less than 7/5 the amount Hamish earns per hour
x = 7/5y - 2 - - - - (2)
Substituting (2) into (1)
7/5y - 2 - 5/4y = 1
7/5y - 5/4y = 1 + 2
7/5y - 5/4y = 3
Taking the L. C. M
(28y - 25y) / 20 = 3
28y - 25y = 60
3y = 60
y = 20
Substitute y = 20 into (1)
x - 5/4(20) = 1
x - 100/4 = 1
x - 25 = 1
x = 1 + 25
x = 26
y = Hamish's earning = $20
x = Harry's earning = $26