Answer: 3.35x10²³atoms H2
Explanation: solution attached:
Convert mass of Al to moles
Do the mole to mole ratio between Al and H2
Convert moles of H2 to atoms using Avogadro's number.
Answer:
Kb = 6.22x10⁻⁷
Explanation:
Triethanolamine, C₆H₁₅O₃N, is in equilibrium with water:
C₆H₁₅O₃N(aq) + H₂O(l) ⇄ C₆H₁₅O₃NH⁺(aq) + OH⁻(aq)
Kb is defined from concentrations in equilibrium, thus:
Kb = [C₆H₁₅O₃NH⁺] [OH⁻] / [C₆H₁₅O₃N]
The equilibrium concentration of these compounds could be written as:
[C₆H₁₅O₃N] = 0.486M - X
[C₆H₁₅O₃NH⁺] = X
[OH⁻] = X
pH is -log [H⁺], thus, [H⁺] = 10^-pH = 1.820x10⁻¹¹M
Also, Kw = [OH⁻] ₓ [H⁺];
1x10⁻¹⁴ = [OH⁻] ₓ [H⁺]
1x10⁻¹⁴ = [OH⁻] ₓ [1.820x10⁻¹¹M]
5.495x10⁻⁴M = [OH⁻], that means <em>X = 5.495x10⁻⁴M</em>
Replacing in Kb formula:
Kb = [5.495x10⁻⁴M] [5.495x10⁻⁴M] / [0.486M-5.495x10⁻⁴M]
<em>Kb = 6.22x10⁻⁷</em>
<em></em>
Answer : The rate law for the overall reaction is, ![Rate=k[NO]^2[H_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BNO%5D%5E2%5BH_2%5D)
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
As we are given the mechanism for the reaction :
Step 1 :
(slow)
Step 2 :
(fast)
Overall reaction : 
The rate law expression for overall reaction should be in terms of
.
As we know that the slow step is the rate determining step. So,
The slow step reaction is,

The expression of rate law for this reaction will be,
![Rate=k[NO]^2[H_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BNO%5D%5E2%5BH_2%5D)
Hence, the rate law for the overall reaction is, ![Rate=k[NO]^2[H_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BNO%5D%5E2%5BH_2%5D)
What grade are you in I’m in 9th ;-;