Answer:
The glycosylation reaction or glycoside formation is an organic reaction in which the hemiacetal group of cyclists ketoses or aldoses turns into acetals, named glycosides. Reaction in the attached picture.
Explanation:
Carbohydrates can be found in an open-chain form or a cyclic form. For the second one, the carbonyl group of the aldehyde could react with the alcohol group of the molecule to form the cycle. As shown in the attached picture, the alcohol group of this cyclic form could react with an alcohol (like methanol) in acidic conditions to form an acetal. These compounds are stable at neutral and acidic conditions, but they hydrolyze at basic conditions. This reaction produces both acetals anomers (α and β) because the attack of the nucleophile (alcohol) could be from both sides. However, the most stable anomer will predominate.
Answer:
Explanation:
The atomic radius of elements are used to estimate the sizes of elements. The atomic radius is taken as half of the inter-nuclear distance between two covalently bonded atoms of non-metallic elements or half of the distance between two nuclei in the solid state of metals.
To solve this problem we will obtain the atomic radius values of the given elements from a standard atomic radius table;
Si 111 pm
P 98 pm
Cl 79 pm
S 87pm
pm = picometer
We see that chlorine has the least atomic radius
They’ll have moved the farthest, since the solvent is best at carrying those kinds of materials.
Answer:
Controlling the environment is the most key procedures for getting good results.
Explanation:
The control environment for an experiment is the essential part for getting good results. In control environment, there is no or less chances of disruption
from the external environment which can cause the results of the data more acceptable. So the scientists prefers laboratory for performing experiment as compared to outer environment. So in my opinion for getting better results, the control environment is the most necessary experimental procedure.
Answer:
b) O₂
d) CH₄
Explanation:
In a chemical equation, the <u>reactants</u> are the substances that are written on the <u>left side</u>. The reactants react to produce the products. On the right side, the products are written.
The arrow => is used to separate the reactants from the products.
To the left of the arrow, you can see this written:
CH₄ + 2O₂
The plus sign + is used to separate each reactant.
In 2O₂ you can ignore the big 2 because it is a coefficient, which is written to balance the equation.
The reactants are CH₄ and O₂