Answer:
The relation between inputs and outputs is given by an equation called the equation of function. Since the outputs are also real values, hence, reasoning by analogy, you may use the arithmetical operation between functions (addition, subtraction, multiplication, division) to produce new functions.
Check the picture below
now, <span>26°35' is just 26bdegrees and 35 minutes
your calculator most likely will have a button [ </span><span>° ' " ] to enter degrees and minutes and seconds
there are 60 minutes in 1 degree and 60 seconds in 1 minute
so.. you could also just convert the 35' to 35/60 degrees
so </span>
![\bf 26^o35'\implies 26+\frac{35}{60}\implies \cfrac{1595}{60}\iff \cfrac{319}{12} \\\\\\ tan(26^o35')\iff tan\left[ \left( \cfrac{391}{12} \right)^o \right]](https://tex.z-dn.net/?f=%5Cbf%2026%5Eo35%27%5Cimplies%2026%2B%5Cfrac%7B35%7D%7B60%7D%5Cimplies%20%5Ccfrac%7B1595%7D%7B60%7D%5Ciff%20%5Ccfrac%7B319%7D%7B12%7D%0A%5C%5C%5C%5C%5C%5C%0Atan%2826%5Eo35%27%29%5Ciff%20tan%5Cleft%5B%20%5Cleft%28%20%5Ccfrac%7B391%7D%7B12%7D%20%5Cright%29%5Eo%20%5Cright%5D)
now, the angle is in degrees, thus, make sure your calculator is in Degree mode
A radius of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also their length. Set up the formula for the area of a circle. The formula is A = π r 2 it equals the area of the circle, and r equals the radius.
Solve for the radius.
Plug the area into the formula.
Divide the area by.
Take the square root.
This is the area of a triangle