Answer:
q = 2,95 10-6 C
Explanation:
The magnetic force on a particle is described by the equation
F = q v x B
Where bold indicate vectors
Let's make the vector product
vxB =
v x B = 1.20 106 [i ^ (4 0.130) - j ^ (3 0.130)]
vx B = 1.20 106 [0.52 i ^ - 0.39j ^]
As they give us the force module, let's use Pythagoras' theorem,
|v xB | =1.20 10⁶ √( 0.52² + 0.39²)
|v x B| = 1.20 10⁶ 0.65
v xB = 0.78 10⁶
Let's replace and calculate
2.30 = q 0.78 10⁶
q = 2.3 / 0.78 106
q = 2,95 10-6 C
Answer: He has only move 0.2 yards
Explanation: When you subtract 18.3 from 18.5 you get 0.2 and that is how much he's moved
The total momentum of the system is equal to 50 Kgm/s.
<u>Given the following data:</u>
To determine the total momentum of the system:
Mathematically, momentum is given by the formula;

<u>For Football player 1:</u>

Momentum 1 = 160 Kgm/s.
<u>For Football player 2:</u>

Momentum 1 = 210 Kgm/s.
Now, we can calculate the total momentum of the system:

Total momentum = 50 Kgm/s.
<u>Note:</u> We subtracted because the football players were moving in opposite directions.
Read more: brainly.com/question/15517471
Answer:
nothing, mass is not affected by gravitational force
Explanation:
Weight is the gravitational force a planet exerts on a mass on the surface.
It is the product of the mass of an object with the gravitational acceleration that the planet produces.
The weight is the gravitational force

where,
m = Mass of the object
g = Acceleration due to gravity = 9.81 m/s²
Mass is the property that matter has which opposes the force being applied to it. It is intrinsic to the object itself and does not change according to the gravitational force. But, the weight changes.
The law applied here is Hooke's Law which describes the force exerted by the spring with a given distance. The equation for this is F = kΔx, where F is the force in Newtons, k is the spring constant in N/m while Δx is the displacement in meters.
If you want to find work done by a spring, this can be solved by using differential equations. However, derived equations are already ready for use. The equation is
W = k[{x₂-x₁)² - (x₁-xn)²],
where
xn is the natural length
x₁ is the stretched length
x₂ is also the stretched length when stretched even further than x₁
In this case xn =x₁. So, that means that (x₁-xn) = 0 and (x₂-x₁) = 11 cm or 0.11 m.
Then, substituting the values,
2 J = k (0.11² -0²)
k = 165.29 N/m
Finally, we use the value of k to the Hooke's Law to determine the Force.
F = kΔx = (165.29 N/m)(0.11 m)
F = 18.18 Newtons